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Compactness in Banach space theory – selected problems

Antonio Avil és and Ond řej F. K. Kalenda

Abstract. We list a number of problems in several topics related to compactness in nonseparable
Banach spaces. Namely, about the Hilbertian ball in its weaktopology, spaces of continuous functions on
Eberlein compacta, WCG Banach spaces, Valdivia compacta and Radon-Nikodým compacta.

Compacidad en espacios de Banach - problemas escogidos

Resumen. Enumeramos una serie de problemas en diferentes temas relacionados con compacidad en
espacios de Banach no separables. Concretamente, sobra la bola euclı́ea en su topologı́a débil, espacios de
funciones continuas en compactos de Eberlein, compactos deValdivia y compactos de Radon-Nikodým.

1. The hilbertian ball and their relatives

Considerκ an uncountable cardinal, identified with the set of ordinalsless thanκ. The closed ball of the
Hilbert spaceℓ2(κ) equipped with the weak topology can be identified with the following compact subspace
of Rκ, the identification consists simply of taking square with sign in each coordinate:

B(κ) =

{

x ∈ R
κ :

∑

i∈κ

|xi| ≤ 1

}

The closed subspaces ofB(κ) are the uniform Eberlein compacta. This class is well known and studied.
Some standard facts are the following:

• B(κ) is a Fréchet space, that is every point in the closure of a setA ⊂ B(κ) is the limit of sequence
of elements ofA (this is a consequence of the fact that every element ofB(κ) has countable support)

• The density character and the weight of any closed subspace of B(κ) coincide. In particular, any
separable subspace is metrizable (also a consequence of thefact that every element ofB(κ) has
countable support).

• Every closed subset ofB(κ) contains aGδ point (take a point with maximal norm).

• B(κ) is sequentially compact: every sequence contains a convergent subsequence (aGδ-point in the
set of cluster points of the sequence provides a convergent subsequence).
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• Every continuous image of a closed subset ofB(κ) is homeomorphic to a subspace ofB(κ) [11].

These are properties of the class of subspaces ofB(κ) rather than properties ofB(κ) itself (actually,
these properties are shared by the more general class of Eberlein compacta, though the proofs require
much deeper facts). A study of specific topological properties of the spaceB(κ) that distinguish it from its
subspaces has been made in recent work by the authors [5, 9, 22, 8]. The results include (κ is an uncountable
cardinal):

• The spaceB(κ) is a continuous image ofA(κ)N, whereA(κ) is the one point compactification of the
discrete space of cardinalityκ [5]. It was shown by Bell [10] that not all subspaces ofB(κ) have this
property.

• In [9] a topological invariant called fiber order is introduced that -roughly speaking- associates to
a non-metrizable compact setK and a pointx a preordered metrizable compact spaceFx(K) and
an ordered setOx(K) (which is the canonical quotient ofFx(K)). We proved thatOx(B(κ)) is a
singleton forx in the sphere andOx(B(κ)) is order-isomorphic to interval[0, 1] for otherx. This
allows to check thatB(κ) is not homeomorphic to its finite powers and to several other spaces.

• B(κ) does not map continuously onto any productK × L where bothK andL are nonmetrizable
[8].

There is still much to discover about this space. One open problem is the following:

Problem 1 IsB(κ) homeomorphic toB(κ) ×K for some metrizable compactK? ForK = [0, 1]?

A type of question that can lead the research for an understanding of this compact is to know whether
it is homeomorphic to some other compact spaces, closely related to it. We provide now a family of such
spaces. Given two functionsa, b : κ −→ [−1, 1] satisfying−1 ≤ a(i) < b(i) ≤ 1 for all i ∈ κ, we denote

B(κ, a, b) =

{

x ∈ R
κ :

∑

i∈κ

|xi| ≤ 1 anda(i) ≤ xi ≤ b(i) for all i ∈ κ

}

This is a more general family of compact spaces than that of spaceB(M,N) defined in [22], that would
correspond toB(M,a, b) where whenb is constant equal to 1 anda takes value 0 onN and -1 onM \N .
Geometrically, for a fixedi0 ∈ κ, the set{x ∈ B(κ) : a ≤ x(i0) ≤ b} corresponds to the intersection of
the ball with aband, the region between two hyperplanes, soB(κ, a, b) is the intersection ofB(κ) with a
certain family of bands.

To avoid trivialities, we will assume that
∑

i∈κ

(a(i)+ + b(i)−) < 1,

where we denotet+ = max(0, t) andt− = max(0,−t). We remark thatB(κ, a, b) is empty if this sum is
strictly greater than1 and that it is a singleton if the sum equals1.

As we shall see later, it is not difficult to check that every spaceB(κ, a, b) is a retract of each other.
All the properties ofB(κ) enumerated above hold for all compactaB(κ, a, b), even the computation of the
fiber ordersOx(K) (just the same proof given in [9] is valid for any of these spaces).

Problem 2 Are all compact spacesB(κ, a, b) homeomorphic toB(κ)? Determine the classification up to
homeomorphism of the spacesB(κ, a, b).

First we remark that we can restrict ourselves to functionsa andb satisfying−1 ≤ a(i) ≤ 0 < b(i) ≤ 1
and|a(i)| ≤ |b(i)| for all i < κ. We call such pairs admissible.
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Proposition 1 Every compact spaceB(κ, a, b) is homeomorphic to a space(B, κ, a′, b′) wherea′, b′ are
admissible.

PROOF. Suppose that for somei we have eithera(i) > 0 or b(i) < 0. Denote

A = {i ∈ κ : a(i) > 0}, B = {i ∈ κ : b(i) < 0}

and sets =
∑

i∈A a(i) −
∑

i∈B b(i). Then for eachx ∈ B(κ, a, b) we have

|xi| ≤











1 − s, i ∈ κ \ (A ∪B),

1 − s+ a(i), i ∈ A,

1 − s− b(i), i ∈ B.

Therefore we can without loss of generality suppose that

|a(i)| ≤ 1 − s, |b(i)| ≤ 1 − s for i ∈ κ \ (A ∪B), (1)

b(i) ≤ 1 − s+ a(i) for i ∈ A, (2)

a(i) ≥ −(1 − s− b(i)) for i ∈ B. (3)

Then the mapping which assigns to each(xi)i∈κ the point(x′i)i∈κ such that

x′i =











xi−a(i)
1−s

, i ∈ A,
xi−b(i)

1−s
, i ∈ B,

xi

1−s
, x ∈ κ \ (A ∪B),

is a homeomorphism ofB(κ, a, b) ontoB(κ, a′, b′), where

a′(i) =











0 i ∈ A,
a(i)−b(i)

1−s
i ∈ B,

a(i)
1−s

i ∈ κ \ (A ∪B),

b′(i) =











b(i)−a(i)
1−s

i ∈ A,

0 i ∈ B,
a(i)
1−s

i ∈ κ \ (A ∪B).

Then−1 ≤ a′(i) ≤ 0 ≤ b′(i) ≤ 1 for eachi ∈ κ. Further, for eachi such that|b′(i)| < |a′(i)| we can
redefine the pair(a′(i), b′(i)) by (−b′(i),−a′(i)). In this way we get an admissible pair(a′′, b′′) such that
B(κ, a, b) is homeomorphic toB(κ, a′′, b′′). �

For t ∈ [−1, 1], by abuse of notation, we will denote byt the constant function equal tot and byt∗

the function onκ that it is equal tot except in one point where it takes value0. We can focus on several
particular cases:

• B(κ) = B(κ,−1, 1) is the ball

• B+(κ) = B(κ, 0, 1) is the positive cone of the ball

• B
1

2 (κ) = B(κ,−1∗, 1) is half ball

• B(κ,−t, t) for t ∈ (0, 1)

• B(κ, 0, t) for t ∈ (0, 1)

Problem 3 Are any two from the compact spaces above homeomorphic?

This problem is connected with Problem 1. It is proven in [22]thatB+(κ) = B+(κ) × [0, 1] and
B

1

2 (κ) = B
1

2 (κ) × [0, 1]. These results are obtained by using the notions of cone∆(K) and double cone
♦(K) of a compact spaceK. The space∆(K) is obtained fromK× [0, 1] by gluingK×{1} to a singleton,
and♦(K) by gluingK × {1} to a singleton andK × {0} to another singleton. Fixi ∈ κ and suppose that
functiona satisfiesa(j) ∈ {−1, 0} for all j and functionb satisfiesb(j) = 1 for all j 6= i. We have that:

3



A. Avilés and O.F.K. Kalenda

• B(κ, a, b) = B(κ \ {i}, a, 1)× [0, 1] if b(i) < 1

• B(κ, a, b) = ∆(B(κ \ {i}, a, 1)) if b(i) = 1 anda(i) > −1;

• B(κ, a, b) = ♦(B(κ \ {i}, a, 1) if a(i) = −1.

On the other hand,∆(∆(K)) = ♦(∆(K)) = ∆(♦(K)) = ∆(K) × [0, 1] for any compact spaceK
[22]. These facts allow to prove a number a homeomorphic relations between the spacesB(κ, a, b) of the
formB(M,N) stated in [22, Theorem 9]:

1. If bothN andM \N are infinite, thenB(M,N) ∼ ∆(B(M,N)) ∼ ♦(B(M,N)) ∼ B(M,N) ×
[0, 1].

2. If M \N is finite, thenB(M,N) ∼ B+(M) = ∆(B+(M)) ∼ ♦(B+(M))simB+(M) × [0, 1].

3. If N is finite, thenB(M,N) ∼ B
1

2 (M) ∼ ∆(B
1

2 (M)) ∼ ♦(B
1

2 (M)) ∼ B
1

2 (M) × [0, 1].

Proposition 2 Each of the spacesB(κ, a, b) is a retract of each other.

PROOF. It is easy to see that (provided(a, b) is an admissible pair) everyB(κ, a, b) is a retract of
B(κ), the retraction sending each(xi)i<κ to (min[max[a, xi], b])i<κ.

Second, we shall prove thatB(κ) is a retract ofB+(κ). We start by noticing thatB+(κ) is homeomor-
phic toB+(κ× {0, 1}). We define a continuous surjection ofB+(κ× {0, 1}) ontoB(κ) by

(xi,q)i<κ,q∈{0,1} 7→ (xi,0 − xi,1)i<κ.

This surjection has a continuous right inverseu : B(κ) −→ B+(κ× {0, 1}) defined by

u(x)i,0 = x+
i , u(x)i,1 = x−i , i < κ.

In order to complete the proof, it remains to show thatB+(κ) is a retract of eachB(κ, a, b). So take
B(κ, a, b) and consider a partitionκ =

⋃

n Jn into infinite or empty sets such thatb(i) > 1
n

if i ∈ Jn. Let
κ =

⋃

i<κ Fi be a partition ofκ indicated inκ with the property that for everyi there existsn with Fi ⊂ Jn

and|Fi| = n. We define a continuous surjectionf : B(κ, a, b) −→ B+(κ) by

f(x)i =
∑

j∈Fi

x+
i , i < κ.

We shall define a continuous right inverseu : B+(κ) −→ B(κ, a, b) for f . Fix x ∈ B+(κ) andi < κ.
EnumerateFi = {j1, . . . , jn}. We defineu(x) onFi in the following way:

u(x)j1 = min{xi, b(j1)}, u(x)j2 = min{xi − u(x)j1 , b(j2)}, . . . , u(x)jn
= min{xi −

n−1
∑

l=1

u(x)jl
, b(jn)}.

�

We shall focus now in one particular instance of Problem 3:

Problem 4 AreB(κ) andB+(κ) homeomorphic?

The nice thing about thisnonseparableproblem is that is equivalent to aseparableproblem. In the
following theorem‖x‖ =

∑

i∈κ |xi| (notice that, if we identifyB(κ) with the ball ofℓ2(κ) this is nothing
else that the square of the euclidean norm; for this theorem that square is irrelevant). Also, forx ∈ [−1, 1]ℵ0,
‖x‖∞ = sup{|xn| : n ∈ ℵ0}.

Theorem 3 The following statements are equivalent.

4



Compactness in Banach space theory

1. For every uncountable cardinalκ, B(κ) is homeomorphic toB+(κ).

2. There is an uncountable cardinalκ such thatB(κ) is homeomorphic toB+(κ).

3. There exists a homeomorphismf : B(ℵ0) −→ B+(ℵ0) such that‖f(x)‖ < ‖f(y)‖ whenever
x, y ∈ B(ℵ0), ‖x‖ < ‖y‖.

4. There exists a homeomorphismf : B(ℵ0) −→ B+(ℵ0) such that‖f(x)‖ = ‖x‖ for all x ∈ B(ℵ0)

5. There exists a homeomorphismf : [−1, 1]ℵ0 −→ [0, 1]ℵ0 in the product topologies, such that
‖f(x)‖∞ = ‖x‖∞ for all x.

PROOF. (1 ⇒ 2) is evident.
(2 ⇒ 3) requires using the technique of fiber orders from [9]. As it iscomputed there, forx ∈ K the

fiber preorder structureFx(B(κ)) is either trivial (a singleton) or it is the compact spaceB(ℵ0) endowed
with the preorder relation (x ≤ y ⇐⇒ ‖x‖ ≤ ‖y‖). Just the same computation shows thatFx(B+(κ)) is
either trivial or it is the compact spaceB+(ℵ0) endowed with the order (x ≤ y ⇐⇒ ‖x‖ ≤ ‖y‖). Hence,
if B(κ) andB+(κ) are homeomorphic, then there must exist an order-preserving homeomorphism between
nontrivial fiber preordersFx(B(κ)) andFy(B+(κ)).

For (3 ⇒ 4) it is enough to prove the following statement:
Claim: For every strictly increasing bijectionφ : [0, 1] −→ [0, 1] there exists a homeomorphismg :

B+(ℵ0) −→ B+(ℵ0) such that‖g(x)‖ = φ(‖x‖).
The implication follows from the claim because if(3) holds, then there is a strictly increasing bijection

ψ : [0, 1] −→ [0, 1] such that‖f(x)‖ = ψ(‖x‖); apply the claim toφ = ψ−1 and considerg ◦ f . For
proving the claim we defineg(x0, x1, x2, . . .) = (y0, y1, y2, . . .) as follows:y0 = φ(x0), yn = φ(

∑n

0 xi)−
∑n−1

0 yi.
Finally, for (4 ⇒ 1), consider a partition ofκ into countable sets. For each of these countable setsS we

have a norm-preserving homeomorphismB(S) −→ B+(S). Gluing all these homeomorphisms together
we get a (norm-preserving also) homeomorphismB(κ) −→ B+(κ)

It remains to prove the equivalence of4 and5. This follows from the following theorem which is a
consequence of results of Dijkstra and van Mill [12].

Theorem 4 There exists a norm-preserving homeomorphismf : [−1, 1]ℵ0 −→ B(ℵ0) such thatf([0, 1]ℵ0) =
B+(ℵ0).

PROOF. It follows from [12, Theorem 5.2] that there is an onto homeomorphismg : Rℵ0 −→ Rℵ0

such that:

∀x ∈ R
ℵ0 : ‖g(x)‖1 = ‖x‖∞ (including the infinite values) (4)

g is sign-preserving, i.e.∀x ∈ R
ℵ0∀n ∈ ℵ0 : g(x)n = 0 or signg(x)n = signxn (5)

Let f be the restriction ofg to [−1, 1]ℵ0. Thenf is a norm-preserving homeomorphism of[−1, 1]ℵ0

ontoB(ℵ0). This follows immediately from (4). It remains to show thatf([0, 1]ℵ0) = B+(ℵ0).
First notice that it follows from (5) that:

∀x ∈ R
ℵ0∀n ∈ ℵ0 : xn ≥ 0 ⇒ g(x)n ≥ 0, xn = 0 ⇒ g(x)n = 0. (6)

Hence it is clear thatf([0, 1]ℵ0) ⊂ B+(ℵ0). It remains to prove the converse inclusion. As finitely
supported vectors are dense inB+(ℵ0) andf([0, 1]ℵ0) is compact, it is enough to show that the range
contains all finitely supported vectors inB+(ℵ0). To prove it we introduce the following notation. If
F ⊂ ℵ0 is finite, we set

U(F ) = {x ∈ [0, 1]ℵ0 : xi = 0 for i /∈ F},

V (F ) = {x ∈ B+(ℵ0) : xi = 0 for i /∈ F}
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It follows from (4) and (6) thatf(U(F )) ⊂ V (F ) for each finiteF ⊂ ℵ0. If we show thatf(U(F )) =
V (F ) for eachF , the proof will be completed.

We will show it by induction on the cardinality ofF . If F is a singleton, then it is obvious. Indeed, ifei

denotes thei-th canonical vector inRℵ0 , it follows from (4) and (6) thatg(tei) = tei for eacht ∈ R.
Further, letn ∈ N be such that the equality holds for eachF of cardinality at mostn. Suppose thatF

has cardinalityn+ 1. Fix t ∈ (0, 1] and set

C = {x ∈ U(F ) : ‖x‖∞ = t}, Ci = {x ∈ C : xi = 0} for i ∈ F,

D = {x ∈ V (F ) : ‖x‖1 = t}, Di = {x ∈ D : xi = 0} for i ∈ F.

Then clearlyf(C) ⊂ D. Moreover, by the induction hypothesisf(Ci) = Di for eachi ∈ F . Further, we
remark thatC is homeomorphic toBn, then-dimensional euclidean ball, and that the pair(D,

⋃

i∈F Di) is
homeomorphic to the pair(Bn, Sn−1), whereSn−1 denotes the sphere ofBn. Finally,f(C) is a subset of
D which is homeomorphic toD and contains

⋃

i∈F Di. Thusf(C) = D (as the only subset ofBn which
is homeomorphic toBn and containsSn−1 is the whole setBn).

As t ∈ (0, 1] was arbitrary, we getf(U(F )) = V (F ) which completes the proof. �

2. Spaces of continuous functions on some Eberlein com-
pacta

In the preceeding section we dealt with the topological structure ofB(κ), and now we shall deal with the
structure of the Banach space of continuous functionsC(B(κ)). The first remark is the following:

Proposition 5 Each of the Banach spacesC(B(κ, a, b)) is isomorphic toC(B(κ)).

In order to prove that, one uses Pełczyński’s decomposition method:

Proposition 6 ( Pełczyński)LetX andY be Banach spaces. Suppose thatX is isomorphic to a com-
plemented subspace ofY andY is isomorphic to a complemented subspace ofX . Suppose also thatX is
isomorphic toc0(X), thec0-sum of contably many copies ofX . ThenX andY are isomorphic.

If K is a retract of a compact spaceL, thenC(K) is a complemented subspace ofC(L), so from
Proposition 2 we conclude that the spacesC(B(κ, a, b)) are complemented in each other. A result of Ar-
gyros and Arvanitakis [1] thatc0(C(B(κ))) is isomorphic toC(B(κ)) completes the proof of Proposition 5.

The situation is nevertheless unclear to us for some compactspaces that we know that are not homeo-
morphic, but we do not know about the spaces of continuous functions:

Problem 5 IsC(B(κ)) isomorphic toC(B(κ)n) for n ≤ ω? IsC(B(κ)) isomorphic toC(P (K)) where
P (K) is any of the spaces of probability measures considered in [9]: P (A(κ)n), P (σn(K))...?

Motivated by the classical Milutin’s theorem, it was an openproblem for long time whether every
Banach space of continuous functionsC(K) is isomorphic to a spaceC(L) with L a zero-dimensional
compact. A counterexample to this question was first found byKoszmider [25]. The key property of this
example, and those constructed later in a similar spirit, isthat it is an indecomposable Banach space -
contains no nontrivial complemented subspaces-. However all the Banach spaces we are considering here
are Hilbert generated spaces, in particular weakly compactly generated, and they are very rich in comple-
mented subspaces. Therefore, the problem is still worth being investigated under restricitions (like being
WCG) that make indecomposable counterexamples impossible.
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Problem 6 IsC(B(κ)) isomorphic to someC(L) withL zero-dimensional?

Even the following weaker version of the problem stated by Argyros and Arvanitakis is open:[1]

Problem 7 Is there a nonseparable weakly compact convex setK and a zero-dimensional compactL such
thatC(K) ∼= C(L)?

Hence Problem 6 is open also for any of the spaces mentioned inProblem 5, and in particular for
K = B(κ)n with n finite or countable. Argyros and Arvanitakis [1] were able toconstruct a weakly com-
pact star-shaped setK containinga ball such thatC(K) is isomorphic toC(L) with L zero-dimensional.
Now, we can propose a specific candidate forL. If C(L) should be isomorphic toC(B(κ)), L has to uni-
form Eberlein and not scattered. We proposeL = A(κ)N, whereA(κ) is the one-point compactification of
a discrete set of cardinalityκ.

Problem 8 IsC(B(κ)) or someC(B(κ)n) isomorphic toC(A(κ)N)?

Let us have a look at what we know concerning the conditions ofPelczynski’s decomposition method
when dealing with these problems. First thing is to know ifX ∼= c0(X). In the litterature we find:

• C(A(κ)N) is isomorphic toc0(C(A(κ)N) [6].

• C(B(κ)) is isomorphic toc0(C(B(κ))[1].

The second thing is to know which spaces are isomorphic to complemented subspaces of other spaces.
In the case of spaces of continuous functionsC(K) the usual tool is that of averaging and extension oper-
ators. An extension operator for a continuous injectionv : K −→ L is an operatorT : C(K) −→ C(L)
such thatT (f)(v(x)) = f(x) for all x ∈ K andf ∈ C(K). An averaging operator for a continuous
surjectionu : L −→ K is an operatorT : C(L) −→ C(K) such thatT (u ◦ f) = f for all f ∈ C(K).
In either of the two case, the existence of such an operatorT implies thatC(K) is complemented inC(L).
Often one finds averaging or extension operators that are regular, that is: positive, of norm one, and sending
constant functions to constant functions of same value. Letus see a few remarks about what this technique
can say and what it cannot say for our purposes.

Proposition 7 C(A(κ)N) is isomorphic to a complemented subspace ofC(B(κ)N).

PROOF. Consider the the canonical embeddingu : A(κ) −→ B(κ) that sends every elementi ∈ κ to
thex ∈ B(κ) that is zero everywhere except ati wherexi = 1. This embedding has a regular extension
operator: To every continuous functionf ∈ C(A(κ)) we can associate its extensionT (f) ∈ C(B(κ))
defined asT (f)(x) = f(∞)

(

1 −
∑

i∈κ |xi|
)

+
∑

i∈κ |xi|f(i). By [34, Proposition 4.7], the countable
poweruN : A(κ)N −→ B(κ)N also admits a regular extension operator, henceC(A(κ)N) is isomorphic to
a complemented subspace ofC(B(κ)N). �

Proposition 8 If m < n ≤ ω, thenC(B(κ)m) is a complemented subspace ofC(B(κ)n).

PROOF. B(κ)m is a retract ofB(κ)n, and this provides an embedding with regular extension operator.
�

The problem with the powers ofB(κ) arises in findingC(B(κ)n) complemented inC(B(κ)m) for
m < n. We cannot hope to get this using averaging operators sinceB(κ)m does not map continuously onto
B(κ)n by [8]. Next proposition shows that neither regular extension operators can be used.

7
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Proposition 9 If m < n ≤ ω, there does not exist any embeddingB(κ)n −→ B(κ)m with a regular
extension operator.

PROOF. Supposeu : B(κ)n −→ B(κ)m is such an embedding. A regular extension operator would
provide a continuous functiong : B(κ)m −→ P (B(κ)n) with gu(x) = δx for x ∈ B(κ)n [34]. Since
B(κ)n can be viewed as a compact convex set, we can consider the barycenter maph : P (B(κ)n) −→
B(κ)n which is continuous, affine and satisfiesh(δx) = x. The compositionhg : B(κ)m −→ B(κ)n is
continuous and onto, sincehg(u(x)) = x. However such onto maps do not exist form < n by [8]. �

Proposition 10 The continuous surjectionf : A(κ)N −→ B(κ) constructed in [5] does not admit any
averaging operator.

Proof: Letrn a sequence of positive reals that defines a continuous surjection 2N −→ [0, 1] by (tn) 7→
∑

rntn. For examplern = 2−n−1. Let Z = {z ∈ NN :
∑∞

n=0
zn

rn

≤ 1} andL = Z ×
∏

n∈N
σn(κ)N.

Denote elements ofL as(z, x) wherex = (x[m,n] ∈ σn(κ) : n,m ∈ N). A continuous surjectiong :
L −→ B+(κ) is defined asg(z, x)i =

∑

m∈N

1
rm

x[m, zm]i. The surjectionf form [5] is the composition

of g with a continuous surjectiong : A(κ)N −→ L. It is enough to see thatg has no averaging operator. This
can be seen using a result of Ditor. Define a derivation procedure onB+(κ) in the following way: given a
setX ⊂ B+(κ), its derived setX ′ is the set of allx ∈ X whose fiberg−1(x) contains two disjoint setsS
andT that belong to the closure in the Vietoris topology of the setof fibers{g−1(y) : y ∈ X}. Inductively,
X(n) = (X(n−1))′. According to [13, Corollary 5.4], ifB+(κ)(n) 6= ∅ for all n, theng does not admit
any averaging operator. LetA = {y ∈ B+(κ) :

∑

i∈κ |yi| < 1}. We prove thatA′ = A. Let y ∈ A, and
ε = 1−

∑

i∈κ |yi|. We can consider a sequence of elementsyn ∈ A converging tox in whichyn coincides
with y on the support ofy, andyn has a single extra nonzero coordinate with value3

4ε. It is possible to find
a big enough natural numberk ∈ N such that for every(z, x) ∈ g−1(yn) we have

∑

j<k zj ≥ 1−ε/2. Now
letm another integer big enough so that3

4m
ε <

∑

j≥k rj . We pick a new sequencey′n ∈ A converging to
y, in whichy′n coincides withy on the support ofy and has exactlym extra nonzero coordinates with value
3

4m
ε on each of these coordinates. The elementsy′n have the property that for every(z, x) ∈ g−1(y′n),

∑

i<k zi ≤ 1 − 3
4 . Two cluster points in the Vietoris topologyS andT of the sequences{g−1(yn)} and

{g−1(y′n)} respectively are two disjoint closed sets ofg−1(y), sinceS ⊂ {(z, x) :
∑

j<k zj ≥ 1 − ε/2},
while T ⊂ {(z, x) :

∑

j<k zj ≤ 1 − 3
4ε}. This proves thaty ∈ A′. �

Problem 9 Is there a continuous surjectionf : A(κ)N −→ B(κ) with an averaging operator?

3. Eberlein compacta, WCG spaces and their subspaces

There are certain natural hierarchies of classes of Banach spaces. Two of them – so called descriptive
hierarchy and differentiability hierarchy are described for example in [20, Chapter 1]. Many of these classes
can be characterized using a topological property of the weak topology. For example we have:

Theorem 11 LetX be a Banach space.

• X is separable if and only if(X,w) is separable.

• X is reflexive if and only if(X,w) is σ-compact.

• X is WCG if and only if(X,w) contains a denseσ-compact subset.

• X is weakly Lindel̈of determined (WLD) if and only if(X,w) is primarily Lindel̈of.

• X is Asplund if and only if each separable subset of(X,w) can be covered by countably many
relatively closed metrizable subsets.
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It is not clear whether such a characterization exists for subspaces of WCG spaces:

Problem 10 Is it possible to characterize subspaces of WCG spaces in terms of the weak topology? More
precisely, suppose thatX is a subspace of a WCG space, andY is Banach space weakly homeomorphic to
X , isY also a subspace of a WCG space?

This problem has a sense as subspaces of WCG spaces need not beWCG. There are two basic examples
– the first one by Rosenthal [35] is a subspace of a largeL1(µ) space, the second one is due to Argyros
[14, Theorem 1.6.3] and it is a natural subspace of aC(K) space withK uniform Eberlein compact. But
there are many spaces which are hereditarily WCG – apart fromseparable or reflexive spaces an example
is c0(Γ) for an arbitrary setΓ. So, the following problem seems to be natural.

Problem 11 Characterize those compact spacesK for whichC(K) is hereditarily WCG.

This question was posed to us by Marian Fabian some time ago. Scattered Eberlein compacta have this
property. Indeed, ifK is scattered and Eberlein, thenC(K) is simultaneously Asplund and WCG. Further,
WCG Asplund spaces are hereditarily WCG by [33, Corollary 6], cf. also [14, Proposition 8.3.2]. Another
class with the property thatC(K) is hereditarily WCG is that of Eberlein compacta of weight less thanb by
[4, Corollary 7]. Cardinalb is the bounding number, a cardinal satisfyingℵ1 ≤ b ≤ c. On the other hand,
the above mentioned exampleC(K) of Argyros can be taken so thatK is a uniform Eberlein compact of
weightb. HenceC(B(b)) andC(A(b)N) are not hereditarily WCG, since every uniform Eberlein compact
of weightκ is a subspace ofB(κ) and a continuous image of a subspace ofA(κ).

One more problem inspired by the fact that WCG is not a hereditary property is the following one:

Problem 12 LetK be a convex Eberlein compact, i.e. a convex compact subset ofa locally convex space
which is Eberlein compact. Is it homeomorphic to a convex compact subset of(X,w) for a Banach space
X?

Recall that one of the equivalent definitions of an Eberlein compact is that these are just compact subsets
of (X,w) for a Banach spaceX . If X is a subspace of WCG, then(BX∗ , w∗) is a convex Eberlein compact
(the underlying locally convex space being(X∗, w∗)). But (BX∗ , w∗) is affinelyhomeomorphic to a convex
compact subset of(Y,w) for a Banach spaceY if and only ifX is WCG.

Indeed, suppose first thatX is WCG. LetK ⊂ (X,w) be a generating compact subset. We can embed
(BX∗ , w∗) affinely homeomorphically onto a bounded subset ofCp(K) using the canonical restriction map
x∗ 7→ x∗|K. As bounded pointwise compact subsets ofC(K) are weakly compact, the first implication is
proved.

Conversely, suppose that(BX∗ , w∗) is affinely homeomorphic to a convex compactK ⊂ (Y,w) for
a Banach spaceY . Consider the standard restriction map defined byy∗ 7→ y∗|K. This is a continuous
map of(BY ∗ , w∗) into Cp(K). Moreover, the imageL of BY ∗ separates points ofK. This is a standard
way to prove thatC(K) is WCG. But in our case, we suppose thatK is convex and so,L ⊂ A(K), the
Banach space of all affine continuous functions onK. It is now easy to check thatL ∪ {1} is a weak
compact generating subset ofA(K), henceA(K) is WCG. ButA(K) is isometric toA(BX∗ , w∗) which is
isomorpic toX ×R (orX ×C if the space is complex). ThusX is WCG as a hyperplane of a WCG space.

So, there are examples of Banach spacesX such that(BX∗, w∗) is Eberlein but it cannot be affinely
embedded into(Y,w) for any Banach spaceY . But it is not clear whether it must be homeomorphic to a
convex subset of some(Y,w).

4. Valdivia compacta and their interactions with other struc-
tures

Valdivia compacta form a rich and natural class of compact spaces which is useful in the investigation of
nonseparable Banach spaces with the focus on decompositions to separable pieces. For a detailed study of

9
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this class we refer to [18], a collection of natural examplesof Valdivia compacta can be found in [23], a
study on a more general class in [27]. We recall necessary definitions.

Let Γ be an arbitrary set. We define

Σ(Γ) = {x ∈ R
Γ : {γ ∈ Γ : x(γ) 6= 0} is countable}.

Further, letK be a compact space.

• We say thatA ⊂ K is aΣ-subset ofK if there is a homeomorphic injectionh of K into someR
Γ

such thatA = h−1(Σ(Γ)).

• K is called aValdivia compact spaceif K has a denseΣ-subset.

Moreover,K is called aCorson compact spaceif K is aΣ-subset of itself, i.e. if it is homeomorphic to
a subset ofΣ(Γ).

We start with the following problem.

Problem 13 Let X be a complex Banach space. Suppose that(BX∗ , w∗) admits a convex symmetric
denseΣ-subset. Does it admit an absolutely convex one?

The answer is positive forC(K) spaces (see [21, Theorem 3.8]) and in case(BX∗ , w∗) admits only one
denseΣ-subset (which is trivial). A related problem is the following one.

Problem 14 LetK be a Valdivia compact space andG a compact (or even finite) abelian group of auto-
morphisms ofK. Is there a denseΣ-subset ofK which is invariant for each element ofG?

Even the following simplest case seems to be open.

Problem 15 LetK be a Valdivia compact space andh : K → K a homeomorphism satisfyingh◦h = id.
Is there anh-invariant denseΣ-subset ofK?

The following problem is inspired by results of [19].

Problem 16 Is there a Radon-Nikod́ym Valdivia compact space which contains a copy of[0, ω2]? Or even
a scattered one?

We recall that a Valdivia compact space which does not contain a copy of[0, ω1] is Corson and that a
Corson Radon-Nikodým compact space is Eberlein. The positive answer would yield essentially new ex-
amples of Valdivia compacta, the negative one would yield that the dual of an Asplund space with countably
1-norming Markushevich basis also contains such a basis (see[19, Section 6]).

Another question from [19] is the following.

Problem 17 LetX be an Asplund space. Is there an equivalent norm onX such that the respective bidual
unit ball is Valdivia (in the weak* topology)? Or even such that the dual admits a countably1-norming
Markushevich basis?

If X is Asplund and has densityℵ1, then(BX∗∗ , w∗) is Valdivia by [19, Corollary 4.5]. In this case no
renorming is needed. On the other hand, there is an Asplund space of densityℵ2 such that the respective
bidual unit ball is not Valdivia [19, Example 4.10(b)]. Thisspace is a renorming ofC[0, ω2]. However, if
we consider this space with the canonical norm, the bidual unit ball is Valdivia (as it is for eachC(K) space,
see e.g. [19, Example 4.10(a)]). In this context it is worth to mention the result of [27, Proposition 26],
which implies that the dual to an Asplund space admits a1-projectional skeleton, hence the bidual unit ball
admits a retractional skeleton. The definitions of these notions can be found in [27]. We only stress that this
is a kind of a noncommutative analogue of Valdivia compacta (Valdivia compact spaces are exactly those
admitting a commutative retractional skeleton by [28]). So, the question is whether we can by a renorming
ensure commutativity.

The next problem is from [23] and [24].
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Problem 18 LetK be a linearly ordered compact space which is a continuous image of a Valdivia com-
pactum. IsK an order-preserving continuous image of a linearly orderedValdivia compactum?

Linearly ordered Valdivia compacta have a quite nice structure by [23, Section 3]. A characterization
of such spaces is the content of [24]. But the structure of linearly ordered compact spaces which are
continuous images of Valdivia compacta is less clear. A criterion for recognizing whetherK is an order-
preserving continuous image of a linearly ordered Valdiviacompactum is contained in [24, Theorem 6.1].
In view of this the following question is also interesting.

Problem 19 LetK be a linearly ordered compact space which is a continuous image of a Valdivia com-
pactum. Is the cardinality of the set of all points of uncountable character at mostℵ1?

The positive answer to the preceeding question implies positive answer to this one (due to [26, Proposi-
tion 5.5] and [24, Theorem 6.1]). However, the opposite direction is not clear due to [24, Example 3.5].

The last problem is from [23, Section 7].

Problem 20 LetA be aC∗ algebra. Is the bidual unit ball(BA∗∗ , w∗) Valdivia? Is it true forA = B(ℓ2),
the algebra of all bounded linear operators onℓ2?

For commutativeC∗ algebras, i.e. for spacesC0(T ) with T locally compact, the answer is positive
(see e.g. [23, Theorem 5.5]). More generally, the answer is positive for type IC∗ algebras, i.e. for those
C∗ algebras for which the bidual is a von Neumann algebra of typeI (which is in this case equivalent to
semifiniteness). This follows from [23, Theorem 7.1].

5. Radon-Nikodým compact spaces

Radon-Nikodým (RN) compact spaces are dfined as weak∗ compact subsets of duals of Asplund spaces.
Ever since it was asked by Namioka [30] the main open questionon this subject has been whether the
continuous image of an RN compact is RN compact.

Problem 21 Is the continuous image of an RN compact an RN compact?

There has been a number of papers addressing this problem [32, 36, 2, 16, 29, 31, 4, 7, 3], including
a survey article [15]. We collect in this section a list of problems scattered in the litterature and some
remarks, all of them related to the continuous image problem. First, we recall the intrinsic topological
characterization of RN compacta. Letd : K × K −→ [0,+∞) be a function with the property that
d(x, y) = 0 if and only if x = y. The functiond is said to fragmentK if for every nonemptyL ⊂ K and
everyε > 0 there existsU ⊂ K open such thatU ∩ L 6= ∅ andsup{d(x, y) : x, y ∈ U ∩ L} < ε. A
compact space isRN if and only if there is a lower semicontinuous metricd onK that fragmentsK. If
one does not assumed to satisfy the triangle inequality one obtains the concept of quasiRN compact. The
class of quasi RN compacta is closed under continuous images[2] but the following is unknown:

Problem 22 Is every quasi RN compact an RN compact? Is every quasi RN compact a continuous image
of an RN compact?

The class of quasi RN compacta was discovered independentlyby different authors [2, 16], and it
admits several nice characterizations [4, 15]. The main cases in which it is known thatK being quasi
RN impliesK is RN is whenK is almost totally disconnected [2] -K ⊂ [0, 1]I and for everyx ∈ K,
|{i ∈ I : xi 6∈ {0, 1}}| ≤ ℵ0; that includesK being Corson, Eberlein or zero-dimensional - or whenK has
weight less thanb, whereb is the bounding number, the minimal cardinality of a subset of NN not covered
by aσ-compact set. All classes quasi RN, RN and their continuous images are closed under subspaces,
countable products and taking spaces of probability measuresP (K) and borel measures of variation≤ 1,
M1(K) = (BC(K)∗ , w

∗). The closed convex hull of compact spaceK is a continuous image of the space
P (K), so the following problem by Namioka is a particular case of the continuous image problem:
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Problem 23 LetK be a compact subset of a locally convex space. Assume thatK is RN compact. Is the
closed convex hull ofK also RN compact?

Arvanitakis [2] proved the following:

Theorem 12 For a zero-dimensional compact space, the following are equivalent

1. K is RN

2. K is quasi RN

3. K embeds in a countable product of scattered compact spaces.

In this direction, Argyros asked whether the whole class of RN compacta (and not only zero-dimensional)
can be generated in a sense from the class of scattered compacta. Namely,

Problem 24 Let K be an RN compact. IsK homeomorphic to a subspace ofP (S) for S scattered
compact? Is it a subspace ofM1(S)? Is it a continuous image of a subspace ofM1(S)?

Problem 25 Let K be a RN compact (or quasi RN compact). IsK the continuous image of a zero-
dimensional RN compact spaceL? Can a continuous surjectionf : L −→ K be obtained with an averag-
ing operator?

The interest of getting the averaging operator is the relation with the continuous image problem. If
f : L −→ L has an averaging operator, thenC(L) is a complemented subspace ofC(K). A compact space
is RN compact if and only ifC(K) is an Asplund generated space [14, Theorem 1.5.4], and this class is
closed under complemented subspaces. The fact that these classes of compact spaces can be characterized
through theirC(K) Banach spaces, allows to establish a connection with the problem of gettingC(K)
isomorphic toC(L) with L zero-dimensional, mentioned in Section 2..

Proposition 13 Suppose that there exists a compact spaceK that is quasi RN compact but not RN com-
pact. ThenC(K) is not isomorphic toC(L) for any zero-dimensional compact spaceL.

Proof: SupposeC(K) ∼= C(L). SinceK is quasi RN compact space,C(K) is aσ-Asplund generated
Banach space [17]. Hence so isC(L), soL is quasi RN compact [17]. ButL being zero-dimensional,
Arvanitakis’ Theorem 12 implies thatL is RN. HenceC(L) ∼= C(K) is Asplund generated, andK is RN
[14, Theorem 1.5.5]. �

The approach from [16] to quasi RN compact spaces and the recent characterization of continuous
images of RN compacta in [3] suggests a relevant role of the combinatorics ofNN in the problem of distin-
guishing quasi RN, RN compacta and their continuous images.We have also the fact that the three classes
coincide for compact spaces of weight less thanb [4]. Nevertheless, we do not know the answer to the
following

Problem 26 Assume that every continuous image of an RN compactumK of weightc is RN compact.
Does this imply that every continuous image of an RN compact is RN compact? Suppose that all quasi RN
compacta of wieghtc are continuous images of RN compacta. Does this imply that this holds for all quasi
RN compacta?

A natural way of addressing this problem is through this other one:

Problem 27 LetK be a continuous image of an RN compact. Suppose that all continuous images ofK of
weight at mostc are RN compact. IsK RN compact? Suppose thatK is qRN and all its continuous images
of weightc are continuous images of RN compacta. IsK a continuous image of an RN compactum?

12



Compactness in Banach space theory

Of course, we may ask by the way a similar question like:

Problem 28 LetK be a continuous image of an RN compact. Suppose that all closed subspaces ofK of
weight≤ c are RN compact. IsK RN compact? Similarly for quasi RN compacta and continuous images
of RN compacta.

After the results from [4], it would be natural to ask the sameproblems for cardinalb instead ofc,
because quasi RN compact spaces of weight less thanb are RN, and it is for weightb where first essential
difficulties in the continuous image problem appear.

In [3], Arvanitakis and the first author develop a method of construction of continuous images of RN
compacta that are natural candidates not to be RN compact. Wemention here a concrete one: the space of
almost increasing functions. Let(≺) be a well order onNN, and

AIF =

{

x ∈ [0, 1]N
N

: xσ ≤ xτ +
1

2min{n:σn 6=τn}
wheneverσ ≺ τ

}

.

The spaceAIF is a continuous image of an RN compact [3].

Problem 29 IsAIF an RN compact?

Finally we mention another particular instance of the problem of continuous images studied by Ma-
toušková and Stegall [29]:

Problem 30 LetK be a compact space that can be written as the union of two RN compact spacesK1

andK2. IsK RN compact?

Notice that the union of two compact spaces is the continuousimage of the disjoint union, and clearly
the dijoint union of two RN compact spaces is RN compact. Matoušková and Stegall [29] prove that the
answer to this question is positive in some particular cases: whenK1 ∩K2 is either metrizable, scattered
or aGδ set, or whenK1 is a retract ofK or whenK \K1 is scattered. Fabian [15] asks whether one could
prove the result forK1 ∩K2 Eberlein compact.
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Antonio Avilés, Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100
Murcia (Spain).
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