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Compactness in Banach space theory — selected problems

Antonio Avil és and Ond fej F. K. Kalenda

Abstract.  We list a number of problems in several topics related to @mmess in nonseparable
Banach spaces. Namely, about the Hilbertian ball in its viep&logy, spaces of continuous functions on
Eberlein compacta, WCG Banach spaces, Valdivia compadi&adon-Nikodym compacta.

Compacidad en espacios de Banach - problemas escogidos

Resumen. Enumeramos una serie de problemas en diferentes tema®meldas con compacidad en
espacios de Banach no separables. Concretamente, sobladabliea en su topologia débil, espacios de
funciones continuas en compactos de Eberlein, compactdaldiwia y compactos de Radon-Nikodym.

1. The hilbertian ball and their relatives

Considerx an uncountable cardinal, identified with the set of orditeds thans. The closed ball of the
Hilbert space(x) equipped with the weak topology can be identified with thiofeing compact subspace
of R*, the identification consists simply of taking square witnsin each coordinate:

B(k) = {xGR” Y il < 1}

1ER
The closed subspacesBfx) are the uniform Eberlein compacta. This class is well knomshstudied.
Some standard facts are the following:

e B(k) is a Fréchet space, that is every paint in the closure of d setB(x) is the limit of sequence
of elements of4 (this is a consequence of the fact that every elemef(af) has countable support)

e The density character and the weight of any closed subsgaBé+) coincide. In particular, any
separable subspace is metrizable (also a consequence fafcthihat every element aB(x) has

countable support).
e Every closed subset @(x) contains a5 point (take a point with maximal norm).

e B(k) is sequentially compact: every sequence contains a coenesgbsequence (@-point in the
set of cluster points of the sequence provides a convergbaéguence).
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e Every continuous image of a closed subseBo#) is homeomorphic to a subspace®fx) [11].

These are properties of the class of subspacd3(ej rather than properties dB(x) itself (actually,
these properties are shared by the more general class ofelBbeompacta, though the proofs require
much deeper facts). A study of specific topological propertif the spac®(«) that distinguish it from its
subspaces has been made in recent work by the authors [58), ZBe results include«is an uncountable
cardinal):

e The spaceB(x) is a continuous image of(x)", whereA (k) is the one point compactification of the
discrete space of cardinality[5]. It was shown by Bell [10] that not all subspacesifx) have this

property.

e In [9] a topological invariant called fiber order is introdutthat -roughly speaking- associates to
a non-metrizable compact s&t and a pointz a preordered metrizable compact sp&géK) and
an ordered se®, (K) (which is the canonical quotient &, (K)). We proved thaO,.(B(x)) is a
singleton forz in the sphere an@, (B(x)) is order-isomorphic to interval, 1] for otherz. This
allows to check thaB(x) is not homeomorphic to its finite powers and to several othacss.

e B(r) does not map continuously onto any prodéctx L where bothK and L are nonmetrizable

(8]
There is still much to discover about this space. One opebl@nois the following:
Problem 1 Is B(x) homeomorphic tdB(x) x K for some metrizable compakt? For K = [0,1]?

A type of question that can lead the research for an undetistgiof this compact is to know whether
it is homeomorphic to some other compact spaces, closelterkto it. We provide now a family of such
spaces. Given two functionsb : kK — [—1, 1] satisfying—1 < a(i) < b(¢) < 1forall i € k, we denote

B(k,a,b) = {:17 eR": Z |z;| < 1anda(i) < x; <b(i)foralli e Ii}

1ER

This is a more general family of compact spaces than thataafedp( M, V) defined in [22], that would
correspond tdB(M, a, b) where wherb is constant equal to 1 andtakes value 0 oV and -1 onM \ N.
Geometrically, for a fixed, € x, the set{z € B(k) : a < z(ip) < b} corresponds to the intersection of
the ball with aband the region between two hyperplanes,3x, a, b) is the intersection oB(x) with a
certain family of bands.

To avoid trivialities, we will assume that

> (a(i)t +b()7) < 1,

PER

where we denote™ = maz(0,¢) andt~ = max(0, —t). We remark thaBB(x, a, b) is empty if this sum is
strictly greater than and that it is a singleton if the sum equals

As we shall see later, it is not difficult to check that everaspB(«, a, b) is a retract of each other.
All the properties ofB(x) enumerated above hold for all compaétés, a, b), even the computation of the
fiber ordersD, (K) (just the same proof given in [9] is valid for any of these sm)c

Problem 2 Are all compact spaceB(x, a, b) homeomorphic td3(x)? Determine the classification up to
homeomorphism of the spacB$¢x, a, b).

First we remark that we can restrict ourselves to functioasdb satisfying—1 < a(i) <0< b(i) <1
and|a(7)] < |b(¢)| forall i < k. We call such pairs admissible.
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Proposition 1  Every compact spacB(k, a, b) is homeomorphic to a spa¢®, «, a’, b’) whered’, ' are
admissible.

PROOF  Suppose that for someve have eithet(i) > 0 orb(i) < 0. Denote
A={i€kr:a(i) >0}, B={iek:b(i) <0}
andset = ), , a(i) — >_,c 5 b(7). Then for eaclr € B(«,a,b) we have
1—s, i€ k\(AUB),

|z;| < S 1—s+a(i), i€ A,
1—s—b(i), i€ B.

Therefore we can without loss of generality suppose that

la(i)] <1—s,|b(i)| <1—sforiex\ (AUB), €D
b(i) <1—s+a(i)forie A, 2
a(i) > —(1—s—10b(:)) fori € B. (3)

Then the mapping which assigns to edeh);c,. the point(x});c, such that

zie@ e A,
! i,b 3 .
T; = zTgL), 1€ B7

zer\(AUB),

1-s’

is a homeomorphism aB(x, a, b) onto B(k,a’,b"), where

0 i€ A, Mal—al) ;¢ 4,
a'(i) = QO e V(i)=<0 i€ B,
afs) i€k\(AUB), a) i€r\(AUB).

Then—1 < d/(i) < 0 < V(i) < 1foreachi € k. Further, for eachi such thaid’'(i)| < |a’(¢)| we can
redefine the paifa’ (i), (7)) by (=b/'(7), —a’(¢)). In this way we get an admissible p&ir’, b"”) such that
B(k, a,b) is homeomorphictdB(x, a”,b"”). N

Fort € [—1,1], by abuse of notation, we will denote bythe constant function equal toand by¢*
the function ork that it is equal ta except in one point where it takes valtieWe can focus on several
particular cases:

e B(k) = B(k,—1,1) is the ball

BT (k) = B(k,0,1) is the positive cone of the balll

B2 (k) = B(k, —1*,1) is half ball

B(k,—t,t)fort € (0,1)
e B(k,0,t)fort € (0,1)
Problem 3 Are any two from the compact spaces above homeomorphic?

This problem is connected with Problem 1. It is proven in [t Bt (k) = BT (x) x [0,1] and
Bz (k) = B2 (k) x [0,1]. These results are obtained by using the notions of exff€) and double cone
O(K) of acompact spacE. The spacé\(K) is obtained fromk x [0, 1] by gluing K x {1} to a singleton,
andQ(K) by gluing K x {1} to a singleton and{ x {0} to another singleton. Fik< ~ and suppose that
functiona satisfiesu(j) € {—1,0} for all j and functiord satisfiesh(j) = 1 for all j # i. We have that:
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e B(k,a,b) = B(k\ {i},a,1) x [0,1]if b(i) < 1
e B(k,a,b) = A(B(r\ {i},a,1))if b(i) = 1 anda(i) > —1;
o B(k,a,b) = O(B(k\{i},a,1)if a(i) = —1.

On the other handA (A(K)) = O(A(K)) = A(O(K)) = A(K) x [0, 1] for any compact spacE
[22]. These facts allow to prove a number a homeomorphitiosis between the spacéX«, a, b) of the
form B(M, N) stated in [22, Theorem 9]:

1. If both N andM \ N are infinite, thenB(M, N) ~ A(B(M,N)) ~ O(B(M,N)) ~ B(M,N) x
[0,1].

2. If M\ N is finite, thenB(M, N) ~ Bt (M) = A(BT(M)) ~ O(B+(M))simB* (M) x [0,1].

3. If N is finite, thenB(M, N) ~ B2 (M) ~ A(B2(M)) ~ O(B=(M)) ~ Bz (M) x [0, 1].

Proposition 2  Each of the spaceB(«, a, ) is a retract of each other.

PROOF It is easy to see that (providéd, b) is an admissible pair) ever(x, a, b) is a retract of
B(k), the retraction sending ea¢h; ); <, to (min[max|a, x;],b])i<.

Second, we shall prove th&X(r) is a retract ofB™ (). We start by noticing thaB* () is homeomor-
phicto BT (k x {0,1}). We define a continuous surjection Bf (v x {0,1}) onto B(x) by

(xi,q>i<n,qe{0,1} = (T4,0 — Tij1)i<n-
This surjection has a continuous right inverse B(k) — B (x x {0, 1}) defined by
u(z)io = x;*7 u(x)in =z, i< K.

In order to complete the proof, it remains to show tBat(x) is a retract of eaclB3(x, a,b). So take
B(k,a,b) and consider a partition = | J,, J,, into infinite or empty sets such thati) > 1 if i € J,. Let
k& = U, Fi be apartition of indicated inx with the property that for everythere exists: with F; C J,,
and|F;| = n. We define a continuous surjectign B(k,a,b) — B+ (k) by

f(z); = Zx;", i < K.
JEF;
We shall define a continuous right inverse BT (k) — B(k,a,b) for f. Fixz € Bt (k) andi < k.

Enumeratd’; = {j1,...,Jjn}. We defineu(z) on F; in the following way:

n—1

u(w)j, = min{w;, b(G1)}, u(z);, = min{z; —u(z);,,b(2)}, - - u(z);, = min{z; = ul@);,, b(jn)}-
=1

We shall focus now in one particular instance of Problem 3:
Problem 4 Are B(x) and B (x) homeomorphic?

The nice thing about thinonseparablgoroblem is that is equivalent to separableproblem. In the
following theorem||z|| = >_._, |=;| (notice that, if we identifyB(«) with the ball of¢y () this is nothing
else that the square of the euclidean norm; for this thednatstuare is irrelevant). Also, farc [—1, 1],
[|2]lco = sup{|zn| : n € No}.

Theorem 3 The following statements are equivalent.
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1. For every uncountable cardinal B(x) is homeomorphic t&* (k).
2. There is an uncountable cardinalsuch thatB(x) is homeomorphic t&* (k).

3. There exists a homeomorphigin: B(Ro) — BT (Rg) such that||f(x)|| < ||f(y)|| whenever
2,y € B(Ro), [l < ly]-

4. There exists a homeomorphigm B(Xy) — BT (Rg) such that]| f(z)|| = ||z|| forall z € B(R)

5. There exists a homeomorphigin: [-1,1]% — [0,1] in the product topologies, such that
£ (x)]|oe = [l]| for all .

PROOF (1 = 2)is evident.

(2 = 3) requires using the technique of fiber orders from [9]. As ttasnputed there, far € K the
fiber preorder structurB, (B(k)) is either trivial (a singleton) or it is the compact spdg@t,) endowed
with the preorder relation(< y <= ||z|| < ||ly||)- Just the same computation shows thatB™(k)) is
either trivial or it is the compact spadgt (Ro) endowed with the orden(< y < ||z|]| < ||y||). Hence,
if B(x) andB™ (x) are homeomorphic, then there must exist an order-preggineimeomorphism between
nontrivial fiber preorder®, (B(x)) andF, (B*(x)).

For (3 = 4) it is enough to prove the following statement:

Claim: For every strictly increasing bijectiaf : [0,1] — [0, 1] there exists a homeomorphigm:

B (Rg) — B (R) such thaf|g(z) | = ¢(|]).

The implication follows from the claim becausg#) holds, then there is a strictly increasing bijection
¥ 1 [0,1] — [0,1] such thatl| f(x)| = «(||z||); apply the claim top = ! and considep o f. For
proving the claim we defing(zo, z1, 22, ...) = (Yo, y1, Y2, . . .) asfollows:yo = ¢(x0), yn = A(> ¢ i) —

n—1

Yi-

OFinaIIy, for (4 = 1), consider a partition of into countable sets. For each of these countable$ets
have a norm-preserving homeomorphigfs) — BT (S). Gluing all these homeomorphisms together
we get a (norm-preserving also) homeomorphi3(r) — B (k)

It remains to prove the equivalence ©find5. This follows from the following theorem which is a
consequence of results of Dijkstra and van Mill [12].

Theorem 4 There exists a norm-preserving homeomorphfsni—1, 1] — B(X,) such thatf ([0, 1]%0) =
BF(Xo).

PROOF. It follows from [12, Theorem 5.2] that there is an onto homeophismg : R¥ — R¥o
such that:

Vo € RY : |lg(z)|1 = ||z«  (including the infinite values) 4)
g is sign-preserving, i.e7z € RYVn € R : g(x),, = 0 or signg(x),, = signz,, (5)
Let f be the restriction of to [—1,1]%. Thenf is a norm-preserving homeomorphism[efl, 1]

onto B(Ry). This follows immediately from (4). It remains to show thfg{0, 1]¥0) = BT (Xy).
First notice that it follows from (5) that:

Vo € RYVn e Ry :z, > 0= g(x), > 0,2, =0= g(z), =0. (6)

Hence it is clear thaf ([0, 1]%0) c B*(X). It remains to prove the converse inclusion. As finitely
supported vectors are densefitt (Xo) and f([0, 1]%°) is compact, it is enough to show that the range
contains all finitely supported vectors i3 (X,). To prove it we introduce the following notation. If
F C X is finite, we set

(F)
(F)

U(F)={ze[0,1]% :2; =0fori ¢ F},
\%4 :{JIEB+(NQ)Z$i:0f0ri¢F}
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It follows from (4) and (6) thaif (U (F)) C V(F) for each finiteF C R,. If we show thatf(U(F)) =
V(F) for eachF, the proof will be completed.
We will show it by induction on the cardinality df. If F'is a singleton, then it is obvious. Indeedejf
denotes the-th canonical vector ifkR™, it follows from (4) and (6) thay(te;) = te; for eacht € R.
Further, letn € N be such that the equality holds for eakElof cardinality at most.. Suppose thak’
has cardinality: + 1. Fix ¢t € (0,1] and set

C={xeU(F): |z =t} Ci={xeC:xz;=0}fori € F,
D={zeV(F): |z =t} D;={x€D:x;=0}foriecF.

Then clearlyf(C') C D. Moreover, by the induction hypothesi$C;) = D, for eachi € F. Further, we
remark thatC is homeomorphic td3,,, then-dimensional euclidean ball, and that the @d; | J;. » D;) is
homeomorphic to the paiB,,, S,—1), whereS,,_; denotes the sphere &;,. Finally, f(C) is a subset of
D which is homeomorphic td and containg ), » D;. Thusf(C) = D (as the only subset d8,, which
is homeomorphic td,, and contains,, _; is the whole seB,,).

Ast € (0,1]) was arbitrary, we gef (U (F')) = V(F') which completes the proof. B

2. Spaces of continuous functions on some Eberlein com-
pacta

In the preceeding section we dealt with the topologicalcttme of B(x), and now we shall deal with the
structure of the Banach space of continuous funct@B(x)). The first remark is the following:

Proposition 5 Each of the Banach spacé§B(k, a, b)) is isomorphic toC'(B(x)).
In order to prove that, one uses Pelczyhski's decompaositiethod:

Proposition 6 ( Pefczyhski)Let X andY be Banach spaces. Suppose thais isomorphic to a com-
plemented subspace BfandY is isomorphic to a complemented subspac& ofSuppose also that is
isomorphic tacy (X ), thecy-sum of contably many copies 8f. ThenX andY are isomorphic.

If K is a retract of a compact spade thenC(K) is a complemented subspace®fL), so from
Proposition 2 we conclude that the spa¢&$3(x, a, b)) are complemented in each other. A result of Ar-
gyros and Arvanitakis [1] that) (C'(B(k))) is isomorphic ta”'( B(x)) completes the proof of Proposition 5.

The situation is nevertheless unclear to us for some congpactes that we know that are not homeo-
morphic, but we do not know about the spaces of continuousgtifums:

Problem 5 Is C(B(x)) isomorphic toC'(B(x)™) for n < w? IsC(B(x)) isomorphic toC'(P(K)) where
P(K) is any of the spaces of probability measures considered)inf4A(x)"), P(c,(K))...7

Motivated by the classical Milutin’s theorem, it was an og@oblem for long time whether every
Banach space of continuous functiofi$K') is isomorphic to a spac€(L) with L a zero-dimensional
compact. A counterexample to this question was first founddszmider [25]. The key property of this
example, and those constructed later in a similar spirithdd it is an indecomposable Banach space -
contains no nontrivial complemented subspaces-. Howdl#iteaBanach spaces we are considering here
are Hilbert generated spaces, in particular weakly conypgenerated, and they are very rich in comple-
mented subspaces. Therefore, the problem is still worthgoieivestigated under restricitions (like being
WCG) that make indecomposable counterexamples impossible
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Problem 6 Is C'(B(k)) isomorphic to som€'(L) with L zero-dimensional?
Even the following weaker version of the problem stated bgyhos and Arvanitakis is open:[1]

Problem 7 Isthere a nonseparable weakly compact convexXseand a zero-dimensional compatsuch
thatC'(K) = C(L)?

Hence Problem 6 is open also for any of the spaces mentionBdoinlem 5, and in particular for
K = B(k)™ with n finite or countable. Argyros and Arvanitakis [1] were abletmstruct a weakly com-
pact star-shaped séf containinga ball such that'(K) is isomorphic toC'(L) with L zero-dimensional.
Now, we can propose a specific candidatefoilf C(L) should be isomorphic t6'(B(«)), L has to uni-
form Eberlein and not scattered. We propdse: A(x)Y, whereA(x) is the one-point compactification of
a discrete set of cardinality.

Problem 8 Is C(B(k)) or someC(B(x)™) isomorphic toC(A(x)N)?

Let us have a look at what we know concerning the conditiorRedézynski’'s decomposition method
when dealing with these problems. First thing is to knoW it ¢o(X). In the litterature we find:

o C(A(r)Y) is isomorphic tao (C(A(k)Y) [6].
e C(B(k)) isisomorphic tazg(C(B(x))[1].

The second thing is to know which spaces are isomorphic tgptenmented subspaces of other spaces.
In the case of spaces of continuous functiét{g() the usual tool is that of averaging and extension oper-
ators. An extension operator for a continuous injection’’ — L is an operatof’ : C'(K) — C(L)
such thatT'(f)(v(x)) = f(z) forallz € K andf € C(K). An averaging operator for a continuous
surjectionu : L — K is an operatofl’ : C(L) — C(K) such thatl'(vo f) = f forall f € C(K).
In either of the two case, the existence of such an opefatoplies thatC'(K') is complemented i¢'(L).
Often one finds averaging or extension operators that atgareghat is: positive, of norm one, and sending
constant functions to constant functions of same valueukestee a few remarks about what this technique
can say and what it cannot say for our purposes.

Proposition 7 C(A(x)Y) is isomorphic to a complemented subspac€ @B(x)Y).

PROOF Consider the the canonical embeddingA(x) — B(k) that sends every elemeht « to
thexz € B(k) that is zero everywhere exceptiavherez, = 1. This embedding has a regular extension
operator: To every continuous functighe C(A(x)) we can associate its extensidiif) € C(B(k))
defined asl'(f)(z) = f(o0) (1 — e, |il) + X e, lzil f(i). By [34, Proposition 4.7], the countable
poweru™ : A(k)Y — B(x)N also admits a regular extension operator, hefité(x)") is isomorphic to
a complemented subspace@fB(x)"). W

Proposition 8 If m < n <w, thenC(B(x)™) is a complemented subspacetfB(x)").

PROOF B(k)™is aretract ofB(x)", and this provides an embedding with regular extensionaiper
[ |

The problem with the powers dB(x) arises in findingC'(B(x)™) complemented irC(B(x)™) for
m < n. We cannot hope to get this using averaging operators ghieg™ does not map continuously onto
B(x)™ by [8]. Next proposition shows that neither regular extensiperators can be used.
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Proposition 9 If m < n < w, there does not exist any embeddii¢x)” — B(x)™ with a regular
extension operator.

PROOF Suppose: : B(k)" — B(k)™ is such an embedding. A regular extension operator would
provide a continuous functiog : B(k)™ — P(B(k)") with gu(z) = ¢, for z € B(k)" [34]. Since
B(k)™ can be viewed as a compact convex set, we can consider theebtgey map: : P(B(k)") —
B(x)™ which is continuous, affine and satisfie®,) = =. The compositiorhg : B(k)™ — B(k)" is
continuous and onto, sinégy(u(x)) = x. However such onto maps do not existfor< n by [8]. W

Proposition 10 The continuous surjectiofi : A(k)Y — B(x) constructed in [5] does not admit any
averaging operator.

Proof: Letr, a sequence of positive reals that defines a continuous sajef' — [0, 1] by (¢,,) —
> ruty. Forexample, = 27" LetZ = {z e NV : Y% 22 <1} andL = Z x [[,cnon(r)".
Denote elements af as(z,x) wherex = (z[m,n] € o,(k) : n,m € N). A continuous surjectiog :
L — B*(k) is defined ag(z,2); = >, o %x[m, zm)i- The surjectionf form [5] is the composition
of g with a continuous surjection: A(x)Y — L. Itis enoughto see thathas no averaging operator. This
can be seen using a result of Ditor. Define a derivation praedn BT (x) in the following way: given a
setX C BT (k), its derived sef{” is the set of al: € X whose fibery~!(z) contains two disjoint set§
andT that belong to the closure in the Vietoris topology of theaddibers{g='(y) : y € X}. Inductively,
X = (X(»=DY_ According to [13, Corollary 5.4], iiB*(x)(™) # ( for all n, theng does not admit
any averaging operator. Let = {y € B¥(s) : >_., lyi| < 1}. We prove thatd’ = A. Lety € A, and
e=1-— Zie,{ lyi|. We can consider a sequence of elemegpts A converging tor in whichy,, coincides
with y on the support of, andy,, has a single extra nonzero coordinate with vajeelt is possible to find
a big enough natural numbere N such that for everyz, z) € g~ (y,) we have)", _; z; > 1—¢/2. Now
let m another integer big enough so thgte < >_j>k Tj- We pick a new sequengg, € A converging to
y, in whichy!, coincides withy on the support of and has exactly extra nonzero coordinates with value
%5 on each of these coordinates. The elemefjtbave the property that for evefy,z) € g=1(y.,),
>icr 2 < 1— 2. Two cluster points in the Vietoris topology andT" of the sequencefy ! (y,)} and
{97 (yy,)} respectively are two disjoint closed setsqof' (y), sinceS C {(z,x) : 3°,_, 2z > 1 —¢/2},
while T C {(z,x): 3, 2; <1— fe}. Thisprovesthay € A'. W

Problem 9 s there a continuous surjectioh: A(x)Y — B(k) with an averaging operator?

3. Eberlein compacta, WCG spaces and their subspaces

There are certain natural hierarchies of classes of Bangabtes. Two of them — so called descriptive
hierarchy and differentiability hierarchy are describeddxample in [20, Chapter 1]. Many of these classes
can be characterized using a topological property of the&kw@aology. For example we have:

Theorem 11 Let X be a Banach space.

e X is separable if and only ifX, w) is separable.

X is reflexive if and only it X, w) is c-compact.

X is WCG if and only if X, w) contains a dense-compact subset.

X is weakly Lindebf determined (WLD) if and only {£X, w) is primarily Lindebf.

X is Asplund if and only if each separable subse{ &f w) can be covered by countably many
relatively closed metrizable subsets.
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It is not clear whether such a characterization exists fospaces of WCG spaces:

Problem 10 Isit possible to characterize subspaces of WCG spacesrimstef the weak topology? More
precisely, suppose tha& is a subspace of a WCG space, ands Banach space weakly homeomorphic to
X,isY also a subspace of a WCG space?

This problem has a sense as subspaces of WCG spaces neet\o&hd here are two basic examples
— the first one by Rosenthal [35] is a subspace of a ldrge:) space, the second one is due to Argyros
[14, Theorem 1.6.3] and it is a natural subspace 6f&) space withK uniform Eberlein compact. But
there are many spaces which are hereditarily WCG — apart $eparable or reflexive spaces an example
is ¢o(I") for an arbitrary sef’. So, the following problem seems to be natural.

Problem 11 Characterize those compact spadégor whichC(K) is hereditarily WCG.

This question was posed to us by Marian Fabian some time agtteted Eberlein compacta have this
property. Indeed, i is scattered and Eberlein, théf{ ) is simultaneously Asplund and WCG. Further,
WCG Asplund spaces are hereditarily WCG by [33, Corollarycé]also [14, Proposition 8.3.2]. Another
class with the property that(K) is hereditarily WCG is that of Eberlein compacta of weigissléharb by
[4, Corollary 7]. Cardinab is the bounding number, a cardinal satisfyltig< b < ¢. On the other hand,
the above mentioned exampl& K') of Argyros can be taken so that is a uniform Eberlein compact of
weightb. HenceC(B(b)) andC/(A(b)Y) are not hereditarily WCG, since every uniform Eberlein cactp
of weight« is a subspace dB(x) and a continuous image of a subspacel(f).

One more problem inspired by the fact that WCG is not a heagdjiroperty is the following one:

Problem 12 Let K be a convex Eberlein compact, i.e. a convex compact subaébodlly convex space
which is Eberlein compact. Is it homeomorphic to a convexpgamhsubset of X, w) for a Banach space
X?

Recall that one of the equivalent definitions of an Eberleimpact is that these are just compact subsets
of (X, w) fora Banach spac¥. If X is a subspace of WCG, théBx -, w*) is a convex Eberlein compact
(the underlying locally convex space beif§*, w*)). But (Bx«, w*) is affinelyhomeomorphic to a convex
compact subset @, w) for a Banach spack¥ if and only if X is WCG.

Indeed, suppose first that is WCG. LetK C (X, w) be a generating compact subset. We can embed
(Bx-,w*) affinely homeomorphically onto a bounded subset'pfK’) using the canonical restriction map
x* — 2*| K. As bounded pointwise compact subset&€'df<) are weakly compact, the first implication is
proved.

Conversely, suppose thaBx-,w*) is affinely homeomorphic to a convex compdctC (Y, w) for
a Banach spac¥. Consider the standard restriction map defined/by— y*|K. This is a continuous
map of (By-,w*) into C,(K). Moreover, the imagé of By - separates points df. This is a standard
way to prove that’(K) is WCG. But in our case, we suppose tliétis convex and so. C A(K), the
Banach space of all affine continuous functionson It is now easy to check that U {1} is a weak
compact generating subsetAfK ), henced(K) is WCG. ButA(K) is isometric toA(Bx~,w*) which is
isomorpic toX x R (or X x C if the space is complex). Thus is WCG as a hyperplane of a WCG space.

So, there are examples of Banach spakesuch that( Bx.., w«) is Eberlein but it cannot be affinely
embedded intdY, w) for any Banach spacg. But it is not clear whether it must be homeomorphic to a
convex subset of som&’, w).

4. Valdivia compacta and their interactions with other struc-
tures

Valdivia compacta form a rich and natural class of compaatsp which is useful in the investigation of
nonseparable Banach spaces with the focus on decompsditieeparable pieces. For a detailed study of



A. Avilés and O.F.K. Kalenda

this class we refer to [18], a collection of natural examm&¥aldivia compacta can be found in [23], a
study on a more general class in [27]. We recall necessanyitilefis.
LetT" be an arbitrary set. We define

Y(T) ={z Rl : {y €T :z(y) # 0} is countablé.
Further, letK be a compact space.

e We say thatd C K is aX-subset ofK if there is a homeomorphic injectidnof K into someR"
such thatd = =1 (3(T)).

e K is called avaldivia compact spacé K has a denseE-subset.

Moreover,K is called aCorson compact spadée K is aX-subset of itself, i.e. if it is homeomorphic to
a subset ok (T).
We start with the following problem.

Problem 13 Let X be a complex Banach space. Suppose {liat-, w*) admits a convex symmetric
denseX-subset. Does it admit an absolutely convex one?

The answer is positive faf'(K) spaces (see [21, Theorem 3.8]) and in dd3g -, w*) admits only one
denseX-subset (which is trivial). A related problem is the follawgione.

Problem 14 Let K be a Valdivia compact space axdgla compact (or even finite) abelian group of auto-
morphisms of<. |Is there a dens&-subset ofK” which is invariant for each element 6f?

Even the following simplest case seems to be open.

Problem 15 Let K be a Valdivia compact space ahd K — K a homeomorphism satisfyirgp h = id.
Is there ank-invariant dense:-subset oK ?

The following problem is inspired by results of [19].

Problem 16 |s there a Radon-Nikgan Valdivia compact space which contains a copipab,]? Or even
a scattered one?

We recall that a Valdivia compact space which does not cortaiopy of{0, w,] is Corson and that a
Corson Radon-Nikodym compact space is Eberlein. Theipesinswer would yield essentially new ex-
amples of Valdivia compacta, the negative one would yiedd the dual of an Asplund space with countably
1-norming Markushevich basis also contains such a basi§18e&ection 6]).

Another question from [19] is the following.

Problem 17 LetX be an Asplund space. Is there an equivalent nornXasuch that the respective bidual
unit ball is Valdivia (in the weak* topology)? Or even suclatithe dual admits a countabli:norming
Markushevich basis?

If X is Asplund and has densit;, then(Bx«~,w*) is Valdivia by [19, Corollary 4.5]. In this case no
renorming is needed. On the other hand, there is an Asplusckspl densityR, such that the respective
bidual unit ball is not Valdivia [19, Example 4.10(b)]. Ttepace is a renorming @¥[0, w-|. However, if
we consider this space with the canonical norm, the biduiabatl is Valdivia (as it is for eacld’( K') space,
see e.g. [19, Example 4.10(a)]). In this context it is wocthrtention the result of [27, Proposition 26],
which implies that the dual to an Asplund space admitspaojectional skeleton, hence the bidual unit ball
admits a retractional skeleton. The definitions of thes®mnetcan be found in [27]. We only stress that this
is a kind of a noncommutative analogue of Valdivia compavtddjvia compact spaces are exactly those
admitting a commutative retractional skeleton by [28]), ®e question is whether we can by a renorming
ensure commutativity.

The next problem is from [23] and [24].

10
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Problem 18 Let K be a linearly ordered compact space which is a continuougeraf a Valdivia com-
pactum. ISK an order-preserving continuous image of a linearly ordevattivia compactum?

Linearly ordered Valdivia compacta have a quite nice stnecby [23, Section 3]. A characterization
of such spaces is the content of [24]. But the structure afdily ordered compact spaces which are
continuous images of Valdivia compacta is less clear. Aedon for recognizing whethek is an order-
preserving continuous image of a linearly ordered Valdogenpactum is contained in [24, Theorem 6.1].
In view of this the following question is also interesting.

Problem 19 Let K be a linearly ordered compact space which is a continuougere a Valdivia com-
pactum. Is the cardinality of the set of all points of uncalmé character at most; ?

The positive answer to the preceeding question impliegigesinswer to this one (due to [26, Proposi-
tion 5.5] and [24, Theorem 6.1]). However, the oppositedios is not clear due to [24, Example 3.5].
The last problem is from [23, Section 7].

Problem 20 LetA be aC* algebra. Is the bidual unit ballB 4«~, w*) Valdivia? Is it true forA = B(¢2),
the algebra of all bounded linear operators 657

For commutativeC™ algebras, i.e. for space&%)(7T") with T locally compact, the answer is positive
(see e.g. [23, Theorem 5.5]). More generally, the answeosgtige for type IC* algebras, i.e. for those
C* algebras for which the bidual is a von Neumann algebra of ty@éich is in this case equivalent to
semifiniteness). This follows from [23, Theorem 7.1].

5. Radon-Nikodym compact spaces

Radon-Nikodym (RN) compact spaces are dfined as weakipact subsets of duals of Asplund spaces.
Ever since it was asked by Namioka [30] the main open questiothis subject has been whether the
continuous image of an RN compact is RN compact.

Problem 21 Is the continuous image of an RN compact an RN compact?

There has been a number of papers addressing this problerg@g32, 16, 29, 31, 4, 7, 3], including
a survey article [15]. We collect in this section a list of plems scattered in the litterature and some
remarks, all of them related to the continuous image probl&nst, we recall the intrinsic topological
characterization of RN compacta. Lét: K x K — [0,40c) be a function with the property that
d(z,y) = 0if and only if x = y. The functiond is said to fragmeni if for every nonemptyL C K and
everye > 0 there existd/ C K open such tha/ N L # () andsup{d(z,y) : z,y e UNL} < e. A
compact space i® N if and only if there is a lower semicontinuous mettion K that fragmentgs. If
one does not assunmigo satisfy the triangle inequality one obtains the concéptasiRN compact. The
class of quasi RN compacta is closed under continuous infagbst the following is unknown:

Problem 22 Is every quasi RN compact an RN compact? Is every quasi RNamb@agontinuous image
of an RN compact?

The class of quasi RN compacta was discovered independaynttiifferent authors [2, 16], and it
admits several nice characterizations [4, 15]. The maies&s which it is known thafl being quasi
RN implies K is RN is whenK is almost totally disconnected [2]K C [0,1]! and for everyr € K,
Hiel:x ¢{0,1}} < N; thatincludeds being Corson, Eberlein or zero-dimensional - or wiéhas
weight less thab, whereb is the bounding number, the minimal cardinality of a sub$é'dnot covered
by ao-compact set. All classes quasi RN, RN and their continumagjes are closed under subspaces,
countable products and taking spaces of probability mead(% ) and borel measures of variatigh1,

My (K) = (Bc(x)-,w*). The closed convex hull of compact spages a continuous image of the space
P(K), so the following problem by Namioka is a particular caseheftontinuous image problem:

11
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Problem 23 Let K be a compact subset of a locally convex space. AssumétimBRN compact. Is the
closed convex hull ak also RN compact?

Arvanitakis [2] proved the following:

Theorem 12 For a zero-dimensional compact space, the following arevedent
1. KisRN
2. Kisquasi RN

3. K embeds in a countable product of scattered compact spaces.

In this direction, Argyros asked whether the whole classid@mpacta (and not only zero-dimensional)
can be generated in a sense from the class of scattered damidamely,

Problem 24 Let K be an RN compact. 1& homeomorphic to a subspace B{.S) for S scattered
compact? Is it a subspace 8f; (S5)? Is it a continuous image of a subspace\éf(S)?

Problem 25 Let K be a RN compact (or quasi RN compact). Hsthe continuous image of a zero-
dimensional RN compact spat® Can a continuous surjectiofi: L — K be obtained with an averag-
ing operator?

The interest of getting the averaging operator is the atiith the continuous image problem. If
f: L — L has an averaging operator, théqL) is a complemented subspace&fK’). A compact space
is RN compact if and only if”(K) is an Asplund generated space [14, Theorem 1.5.4], andltss &
closed under complemented subspaces. The fact that tlesseslof compact spaces can be characterized
through theirC(K) Banach spaces, allows to establish a connection with thiglgmroof gettingC(K)
isomorphic toC'(L) with L zero-dimensional, mentioned in Sectian 2

Proposition 13  Suppose that there exists a compact spadhat is quasi RN compact but not RN com-
pact. ThenC'(K) is not isomorphic t&” (L) for any zero-dimensional compact space

Proof: Suppos€(K) = C(L). SinceK is quasi RN compact spac€( K ) is ac-Asplund generated
Banach space [17]. Hence soG¥L), so L is quasi RN compact [17]. Buk being zero-dimensional,
Arvanitakis’ Theorem 12 implies thdt is RN. HenceC' (L) = C(K) is Asplund generated, arfd is RN
[14, Theorem 1.5.5]. &

The approach from [16] to quasi RN compact spaces and thatrebaracterization of continuous
images of RN compacta in [3] suggests a relevant role of thebimatorics ofNY in the problem of distin-
guishing quasi RN, RN compacta and their continuous imadfeshave also the fact that the three classes
coincide for compact spaces of weight less tlhgd]. Nevertheless, we do not know the answer to the
following

Problem 26 Assume that every continuous image of an RN compaéfuofi weightc is RN compact.
Does this imply that every continuous image of an RN compa@N compact? Suppose that all quasi RN
compacta of wieght are continuous images of RN compacta. Does this imply thehtiids for all quasi
RN compacta?

A natural way of addressing this problem is through this otires:

Problem 27 Let K be a continuous image of an RN compact. Suppose that alleemts images ok of
weight at most are RN compact. 1& RN compact? Suppose thitis gRN and all its continuous images
of weightc are continuous images of RN compactakls continuous image of an RN compactum?

12
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Of course, we may ask by the way a similar question like:

Problem 28 Let K be a continuous image of an RN compact. Suppose that allcckgespaces ok of
weight< ¢ are RN compact. 1€ RN compact? Similarly for quasi RN compacta and continumagjes
of RN compacta.

After the results from [4], it would be natural to ask the sapneblems for cardinab instead ofc,
because quasi RN compact spaces of weight lesstilaae RN, and it is for weighti where first essential
difficulties in the continuous image problem appear.

In [3], Arvanitakis and the first author develop a method afistouction of continuous images of RN
compacta that are natural candidates not to be RN compaaméfiion here a concrete one: the space of
almost increasing functions. Lék) be a well order o™, and

1

_ NY —
AIF = {m S [0, 1] CTo S X7+ omin{n:o,#Tn}

whenever < 7‘} .

The spacedl F' is a continuous image of an RN compact [3].
Problem 29 Is ATF an RN compact?

Finally we mention another particular instance of the peabbf continuous images studied by Ma-
touskova and Stegall [29]:

Problem 30 Let K be a compact space that can be written as the union of two Rpacispaced;
and K. Is K RN compact?

Notice that the union of two compact spaces is the continimage of the disjoint union, and clearly
the dijoint union of two RN compact spaces is RN compact. M8itova and Stegall [29] prove that the
answer to this question is positive in some particular casten K; N K is either metrizable, scattered
or aG; set, or whenk(; is a retract of’ or whenK \ K is scattered. Fabian [15] asks whether one could
prove the result fof; N K5 Eberlein compact.
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