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1. Introduction

The classical descriptive set theory is devoted to the study of descriptive classes of
sets in Polish spaces. There are many deep results which found applications, e.g.,
in real analysis or functional analysis. Several books and survey papers contain
essential parts of this theory, see [49], [2], [48], [54], [63]. One of the key tools for
the study of Borel sets in Polish spaces are analytic spaces.

There are several attempts to transfer parts of the theory to more general spaces.
Among them two seem to form a satisfactorily rich theory (K-analytic spaces and
absolute Souslin sets in metrizable spaces) and, in particular the first one, found in-
teresting applications in the study of nonseparable Banach spaces and weak topolo-
gies on them. As representative surveys may serve [8] and [44]. Since these results
enable to study just Lindelöf or metrizable topologies, some further extensions, in-
spired by the previous ones, were made by R.W. Hansell. There is a survey paper
on generalized analytic spaces (on the ”descriptive topology”), which points out
some of key results, written by Hansell, see [22], cf. also [28], [32].

We start our survey by a choice of facts and problems concerning the descriptive
classes of sets in metrizable spaces. We point out in particular some recent results
concerning the mappings which preserve some descriptive properties and we list sev-
eral still open problems which seem to be quite essential for the full understanding
of the theory. Many of them are closely related and have a positive answer under
an axiom of W.G.Fleissner (which is consistent with ZFC provided the existence of
a supercompact cardinal is consistent).

Then we are going to discuss descriptive classes of sets in Tychonoff spaces. An
important feature is that there are several natural notions of analyticity. They
define classes of generalized analytic spaces which are ordered by the inclusion, but
there is no unified attitude to all of them. The classes coincide within metrizable
spaces and some results may be received repeating the methods used for metrizable
spaces. However, many problems are specific. We recall some old and some more
recent results, and we point out some open questions which seem to make the
extension of the classical descriptive set theory and its applications to functional
analysis not yet sufficiently complete.

We are aware that we cannot cover all related results and problems. For example,
we mention only a few results concerning the Borel classes of sets and mappings,
and we do so mainly when applying them to results on the σ-algebra of all Borel
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sets. We shall also omit the part of the theory built by Z. Froĺık and Holický [12],
[14], [13], and the one built by Hansell, J.E. Jayne, and C.A. Rogers [24], [25], which
covered the common parts of the theory of K-analytic spaces and Souslin subsets
of complete metric spaces recalled separately below.

Our exposition does not follow neither the most natural order to prove the pre-
sented results nor the order of their historical appearance. We want to stress
different aspects starting with the descriptions of absolute Souslin spaces as gener-
alizations of corresponding complete spaces and adding gradually the other possible
descriptions and several results and problems connected to them.

Let us recall first some notation which we shall often use. Throughout the paper,
all topological spaces are assumed to be Tychonoff spaces. We use the notation
G = G(X), F = F(X), B = B(X), H = H(X) for the families of all open, closed,
Borel, resolvable sets in a topological space X, respectively. Let us recall that
H ⊂ X is resolvable in X if for every nonempty F ⊂ X either F ∩H or F \H has
a nonempty relative interior in F . A set S ⊂ X is the result of a Souslin operation
applied to sets from a class of sets C if

S =
⋃

ν∈NN

⋂

n∈N

Cν|n,

where ν|n denotes the restriction of ν to the first n coordinates and Cν|n ∈ C(X)
for every ν|n ∈ N

n. Let S(C(X)) stand for the sets which are results of the Souslin
operation applied to sets from C(X) in a topological spaceX (here C stands, e.g., for
the class of closed, Borel, or resolvable sets in topological spaces). In any metrizable
space X, S(F(X)) = S(B(X)) = S(H(X)) and we call the elements of S(F(X))
just Souslin sets in X.

For a mapping f : X → Y and a class of sets C as above we say here that f is C
measurable if f−1(C(Y )) := {f−1(H) : H ∈ C(Y )} ⊂ C(X). We say that f : X → Y

is C bimeasurable if f is C measurable and f takes sets of C(X) to sets of C(Y ).
We say that f : X → Y preserves P (indexed) families, for some property P

of (indexed) families of subsets of Tychonoff spaces, if f(A) := {f(A) : A ∈ A}
(indexed by the sets A) has P in Y if A has P in X.

2. An extension of classical descriptive set theory to metrizable

topological spaces

We are going to study some ”absolute descriptive classes within metrizable
spaces” now. We say that a metrizable space X is absolute P within metrizable
spaces if it belongs to the class P in any metrizable space to which it is homeomor-
phically embedded. We shall omit the words ”within metrizable spaces” sometimes
in this section.

2.1. Completely metrizable spaces. Let us recall several characterizations of
complete metrizability.

Theorem 2.1. The following statements on a topological space X are equivalent:

(a) X is completely metrizable.
(b) X is metrizable and absolute Gδ within metrizable spaces.
(c) X is Gδ in a completely metrizable space.

If X as above is moreover separable, it is Polish.
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These are well-known facts which can be found, e.g., in [4, Theorems 4.3.23 and
4.3.24].

We also have a description of completely metrizable spaces in terms of a sequence
of covers. We use the following notions.

A family D of sets inX is discrete ifX can be covered by open sets such that each
of them has nonempty intersection with at most one element of D. It is σ-discrete
if D =

⋃
n∈N

Dn and each Dn is discrete.
A family R of subsets of X is a refinement of a family E if, for every R ∈ R,

there is E ∈ E such that R ⊂ E and
⋃
E =

⋃
R. We say that N is a network of a

family E of sets if E =
⋃
{N ∈ N : N ⊂ E} for every E ∈ E .

We say that a sequence of covers Cn, n ∈ N, of a topological space X is a
complete sequence of covers if

⋂
{F : F ∈ F} 6= ∅ for every filter F of subsets of X

with F ∩ Cn 6= ∅ for every n ∈ N (”every (Cn)-Cauchy filter has an accumulation
point”). Note that replacing each cover Cn of a complete sequence of covers by
any refinement C∗n, then the sequence of covers C∗n is complete again. This is clear
from the definition but often very useful when working with complete sequences of
covers.

Theorem 2.2. A (separable) metrizable space X is completely metrizable (Polish)
if and only if there is a complete sequence of open covers of X, or equivalently, of
σ-discrete open covers of X.

Let Cn be the cover of X by open balls of diameter 1

n
with respect to a complete

metric on X. Then Cn’s obviously form a complete sequence of open covers. Due to
paracompactness of X each open cover Cn of the complete sequence in the theorem
may be refined by a σ-discrete open refinement C∗n.

Having a complete sequence of open covers Cn of X and X embedded into some

complete metric space (X̂, ρ), we can refine each cover Cn of X by a cover C∗n
consisting of open balls of ρ-diameter less than 1

n
and notice that X =

⋂
n∈N

⋃
{B̂ :

B ∈ C∗n}, where B̂ = B
X̂
(x, r) if B = BX(x, r). For more general statement and

references see Theorem 3.1 in Section 3.1.
Every completely metrizable space can be parametrized in a particular way due

to [17, Theorem 5.6].

Theorem 2.3. Every completely metrizable space X is the image of a one-to-one
continuous mapping f : F → X, where F is a closed subset of DN, D is a discrete
space, and f preserves families with a σ-discrete network.

Since f is one-to-one, f(D) is disjoint for every discrete D and the existence of
a σ-discrete network is equivalent to the existence of a σ-discrete refinement.

2.2. Souslin and discrete-Borel sets in completely metrizable spaces. A
quite complete theory was based and essentially developed by Hansell (the funda-
mental work [15] was followed by a number of further papers by Hansell, e.g., [17],
[16], [18]) who continued in the work of A.H. Stone. We recall the basic notions
and statements which coincide with the classical ones in separable metrizable spaces
and which enable to get many results similar to those of the classical descriptive
set theory. We are going to point out some of them together with related open
problems. Let us recall several characterizations of absolute Souslin and absolute
bi-Souslin spaces, i.e., spaces which are Souslin together with their complement in
any metrizable embedding.
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Theorem 2.4. The following statements are equivalent for a metrizable space A:

(a) A is absolute Souslin within metrizable spaces.
(b) A is a Souslin subset of a completely metrizable space.
(c) A is the projection of a completely metrizable subspace C of A× N

N.
(d) A admits a complete sequence of σ-discrete covers.

The equivalence of (a) and (b) is an easy consequence of Lavrentieff’s theorem
(see [4, Theorem 4.3.21]). The equivalence of (b) and (c) follows from the well-
known characterization of Souslin sets. The equivalence of (d) and (b) is a particular
case of [14, Theorem 4.1], since topologically discrete families have metrically σ-
discrete refinements in A with respect to an arbitrarily chosen metric (cf. [15,
Lemma 2]).

The spaces A with the properties of the previous theorem are called analytic if
they are separable. They are most often defined as continuous images of Polish
spaces. We shall discuss continuous parametrizations of absolute Souslin spaces
later. Also the nonseparable spaces of the above theorem are often called analytic.
To avoid ambiguity, we abbreviate absolute Souslin within metrizable spaces by
metric-analytic here. Every completely metrizable space is clearly metric-analytic.
The property (c) above gives some kind of parametrization which however does not
make clear how to deduce any result on the preservation of metric-analytic spaces
by particular continuous mappings.

The first Luzin separation principle and many of its corollaries found its coun-
terpart in the realm of nonseparable metrizable spaces. It explains why Souslin
sets can be viewed as a tool to study Borel sets in Polish spaces. However, in non-
separable spaces we get an extension of the classical theory for a larger σ-algebra
of sets called, e.g., ”extended Borel sets” by Hansell. We use another name to
distinguish these sets from the elements of σ-algebras arising similarly when study-
ing the topological variants of absolute Souslin spaces. By discrete-Borel sets in
a metrizable space X we understand the elements of the smallest σ-algebra which
contains Borel subsets of X and which is closed with respect to the unions of its
discrete subfamilies. Since discrete families of sets in separable metrizable spaces
are countable, the σ-algebras of Borel and discrete-Borel sets coincide in separable
metrizable spaces. We get the following relation between absolute bi-Souslin and
absolute discrete-Borel sets. It is a particular case of a separation principle and the
subsequent theorem is one of many results relying on it.

Theorem 2.5. A subset B of a metric-analytic space A is discrete-Borel in A if
and only if both B and A \B are metric-analytic (or, equivalently, Souslin in A).

This result can be deduced from some more general once, e.g., [13, Theorem 4.4(a)],
or it follows from two results of Hansell as explained in [22, Theorem 4.5]. The
proofs use the parametrizations which we shall discuss later. However, they could
be easily rewritten with a use of the complete sequences of σ-discrete covers. We
shall see why this observation may be of some interest for the study of a class of
generalized analytic spaces (”(σ-isolated)-K-complete spaces”) below.

The images of Polish spaces by one-to-one continuous mappings are sometimes
called Luzin spaces. In this particular case, they coincide with separable absolute
Borel sets (within metrizable spaces). We shall see that absolute discrete-Borel
spaces can be characterized by some continuous one-to-one parametrizations. The
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condition (c) of the following theorem offers one such parametrization. Let us there-
fore use the abbreviation metric-Luzin for absolute discrete-Borel spaces within
metrizable spaces.

Theorem 2.6. The following statements are equivalent for a metrizable space L:

(a) L is absolute discrete-Borel within metrizable spaces.
(b) L is discrete-Borel in some completely metrizable space.
(c) L is the one-to-one projection of a completely metrizable subspace of L×N

N.

While the equivalence of (a) and (b) follows naturally by the Lavrentieff theorem,
an explanation of the equivalence of (c) and (a) is in [34, Theorem 2.2] and uses
some more results of the theory.

We get a number of results concerning discrete-Borel sets (and discrete-Borel
measurable and bimeasurable mappings), while the analogical study of Borel sets
(and mappings) in nonseparable metrizable spaces is often an open problem. We
shall mention several such problems and positive results.

2.3. Measurable mappings. Let f : X → Y be a Souslin measurable mapping
between metrizable spaces X and Y . Then Y has a basis V =

⋃
n∈N

Vn, where
Vn are discrete families of open sets in Y . So each Un = {f−1(V ) : V ∈ Vn} is
a disjoint family with the property that

⋃
W is Souslin for every W ⊂ U . The

families with this property are called Souslin additive. (If Souslin is replaced by
any other class C of sets, we speak about C additive families.)

Let us recall a deep fundamental result of Hansell [15, Theorem 2], and its
improvement of J. Kaniewski and R. Pol [47, Theorem 1].

Lemma 2.7. A disjoint (point-finite) Souslin additive family in a completely metriz-
able space has a σ-discrete network.

As a corollary we observe

Proposition 2.8. A mapping f : X → Y of a metric-analytic space X onto
a metrizable space Y is Souslin (discrete-Borel, Borel) measurable if and only if
f−1(G) is Souslin (discrete-Borel, Borel) for every open set G in Y .

Let the obviously necessary condition be satisfied. Since all Borel sets and Souslin
sets in metrizable spaces are generated from closed sets by some of the operations of
taking complements, unions, and intersections, which commute with the operation
of preimages, the results for Borel and Souslin are obvious. The only nontrivial
fact is that preimages of unions of discrete families E of sets with discrete-Borel
preimages are discrete-Borel. Indeed, D = f−1(E) is Souslin additive and disjoint.
Therefore there is a σ-discrete network N of D by Lemma 2.7. For every N ∈ N
consider the only D ∈ D with N ⊂ D. Replacing N by N ∗ = N ∩ D we get
a σ-discrete network (here refinement is equivalent) N ∗ = {N∗ : N ∈ N} which
consists of discrete-Borel sets. Thus

⋃
D =

⋃
N ∗ is discrete-Borel.

This proposition is just a sample of many applications of Lemma 2.7 to measur-
able mappings. A lot of classical results may be extended due to it (see [15] and
the other forthcoming papers of Hansell quoted above).

Let us point out another important result on disjoint Borel additive families [57,
Theorem] (see also [5, Theorem 2.6], or [19, Theorem 1], for the case of point-finite
Borel additive families).
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Lemma 2.9. Let A be a point-finite Borel additive family of subsets of a metrizable
space. Then there is an additive Borel class C such that A ⊂ C.

This together with Hansell’s Lemma 2.7 and [17, Lemma 7] gives (see, e.g., [19,
Corollary 1])

Theorem 2.10. Every Borel measurable mapping f : X → Y of a metric-analytic
space X to a metrizable space Y has a Borel class, i.e., there is and additive Borel
class A such that f−1(G(Y )) ⊂ A.

2.4. Parametrizations of absolute Souslin sets and Souslin bimeasurable

mappings. While classical analytic spaces are characterized as continuous images
of Polish spaces, and so they are preserved by continuous mappings, any topological
space X is a continuous one-to-one image of a completely metrizable space, namely
the identity on X considered as a mapping of X endowed with the discrete topology.
Thus it is not evident which mappings preserve metric-analytic spaces. This should
be however one of the most important conclusions of any extension of the notion
of analytic spaces.

Analyzing condition (d) of Theorem 2.4, we may come to the following charac-
terizations of metric-analyticity in terms of continuous parametrizations.

Theorem 2.11. The following statements about a metrizable space A are equiva-
lent:

(a) A is metric-analytic.
(b) There is a discrete space D, a closed F ⊂ DN, and a continuous mapping

f : F → A such that f(F ) = A and f preserves families with a σ-discrete
refinement.

(c) There is a discrete space D, a closed F ⊂ DN, and a continuous mapping
f : F → A such that f(F ) = A and f preserves point-countable indexed
families with a σ-discrete network.

This can be proved following the proof of the corresponding implication of
[14, Theorem 4.1] just for the metrizable spaces. The existence of the stronger
parametrizations of metric-analytic spaces from (c) was proved already in [17, The-
orem 4.1]. Notice that (c) of Theorem 2.4 gives us a parametrization which is con-
tinuous and preserves point-countable indexed families with a σ-discrete network
defined on the completely metrizable C. So it is sufficient to use Theorem 2.3.

As an immediate corollary we get the following result on preservation of metric-
analyticity in case of continuous mappings f which preserve families with a σ-
discrete refinement.

Theorem 2.12. Let f : X → Y be a Souslin measurable mapping preserving
families with a σ-discrete refinement of a metric-analytic space X onto a metrizable
space Y . Then Y is metric-analytic and f : X → Y is Souslin bimeasurable.

If f is continuous, we may parametrize X (or S ∈ S(F(X))) by a ϕ : F ⊂ DN →
S as in Theorem 2.11(b), compose it with f , and use Theorem 2.11 again.

The assumption of continuity could be relaxed to the weaker assumption of
Souslin measurability by standard methods. In a more general setting it can be
found in [13, Theorem 4.4(a)]. It can be also proved following [17, Theorem 7.3].
However, we have to replace the application of [17, Corollary 4.2] by Theorem 2.12
and the application of [17, Lemma 6.1] by [14, Lemma 2.5(b)]. We want to formulate
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explicitly some still open problems concerning the question whether the condition
of preserving the existence of σ-discrete refinements can be relaxed. On the other
hand, we want to know whether some formally stronger conditions on the mappings
are also necessary.

Let us consider a Souslin bimeasurable mapping f : X → Y of a metric-analytic
space X onto a metric-analytic space Y . If D is a discrete family of Souslin subsets
of X, then D is Souslin additive. So E = f(D) is also Souslin additive. In fact,
we can deduce more. Consider any Souslin FD ⊂ f(D) for D ∈ D. Then FD =
f(f−1(FD) ∩D). The sets f−1(FD) ∩D form a discrete family of Souslin sets and
so their union is again Souslin. Hence

⋃
{FD : D ∈ D} is Souslin in Y .

Problem 2.13. Let E be a family of Souslin sets in a completely metrizable space
Y such that for every choice of Souslin SE ⊂ E, E ∈ E, the union

⋃
{SE : E ∈ E}

is Souslin.

(a) Does E have a σ-discrete refinement?
(b) Does E have a σ-discrete network?
(c) Does there exist a σ-discrete set D such that {E \ D : E ∈ E} is point-

countable (in other words, is E point-countable outside of D)?

The two requirements (b) and (c) on a family E are abbreviated by E is almost
discretely σ-decomposable in [26]. This property is very useful because taking any
subset of each element of such a family, we get a family with the same property.
It follows immediately from the fact that every point-countable family which has
a σ-discrete network is ”σ-discretely decomposable” (see [15] for the definition of
σ-discretely decomposable families and [53, Lemma 3.2]). This explains also the
name chosen for almost discretely σ-decomposable families. Such a heredity does
not hold for families with a σ-discrete network or σ-discrete refinement in general.

The positive solution for some of the properties (a) - (c) of E would give us
that the Souslin bimeasurable mapping f above takes necessarily discrete families
of Souslin sets to families E with the corresponding property from (a), (b), or (c).
Therefore we ask the following questions.

Problem 2.14. Let f : X → Y be a Souslin measurable (or just discrete-Borel
measurable) mapping of a completely metrizable space X onto a metrizable space
Y . Let f(D) have a σ-discrete refinement whenever D is a discrete family of Souslin
sets in X.

(a) Is then Y metric-analytic?
(b) Does f preserve families with a σ-discrete refinement?
(c) Does f preserve almost discretely σ-decomposable families?

The positive answer to (b) would give us a positive answer to (a). Let us remark
that (c) is equivalent with the property that f takes discrete families to almost dis-
cretely σ-decomposable families, similarly as for families with a σ-discrete network
or refinement. Souslin measurability implies that preimages of discrete-Borel, so
bi-Souslin, sets in Y are bi-Souslin in X, and thus discrete-Borel by Theorem 2.5.

Lemma 2.7 gives as a consequence the answer for particular classes of mappings:

Theorem 2.15. Let f : X → Y be a Souslin measurable mapping with rela-
tively compact fibers between metric-analytic spaces X and Y such that f(F(X)) ⊂
S(F(Y )). Then f preserves families with a σ-discrete network. In particular,
f : X → Y is Souslin bimeasurable.
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Indeed, if D is a discrete family of subsets of X, then {D : D ∈ D} is discrete,
so ”closed additive”. Then {f(D) : D ∈ D} is Souslin additive and point-finite
by our assumptions. Now we may apply Lemma 2.7. If A is Souslin in X, then
it is metric-analytic, the restriction of f to A preserves families with a σ-discrete
network, and we may apply Theorem 2.12.

Let us remark that the previous theorem applies in particular if f is a perfect
mapping. We shall see that for some classes of generalized analytic topological
spaces we are able to prove the preservation by perfect mappings also in cases were
we have no analogy to Theorem 2.15 and to Lemma 2.7.

Fleissner [5, Theorem 5.3] proved that if the existence of a supercompact cardinal
is consistent with ZFC, then an axiom (SCω2) is consistent with ZFC, which gives a
positive answer to our above problems. It follows from the results of Fleissner that,
under (SCω2), a mapping f of a metric space X onto a metric space Y , which takes
discrete sets to σ-discrete sets, takes discrete families of sets to almost discretely
σ-decomposable families (cf. [26, Theorem 2(a)]), equivalently, it preserves almost
discretely σ-decomposable families.

Let us consider f : X → Y from Problem 2.14 (except for the completeness of
X). Of course, any discrete set D can be viewed as a discrete family of singletons,
which are Souslin sets, and so the singletons which are their images form a family
which has a σ-discrete refinement. This means just the σ-discreteness of f(D).
Thus under (SCω2) the answers to the above Problem 2.14 are affirmative.

The solutions of Problem 2.13 can be also deduced under (SCω2) from Fleissner’s
results. Consider, e.g., the discrete sum X of the elements of E . Define f : X → Y

as the identity on each E ∈ E . Now f takes discrete sets D to sets with all
subsets Souslin in Y by the assumption. Using Lemma 2.7, the sets f(D) are σ-
discrete. Now the positive solution of Problem 2.14(c) gives the positive solution
of Problem 2.13. The family E is almost discretely σ-decomposable.

Theorem 2.16 (under (SCω2)). Let f : X → Y be a Souslin measurable mapping
of a metrizable space X to a metrizable space Y which takes closed sets in X to
metric-analytic sets. Then f preserves almost discretely σ-decomposable families,
and so it preserves σ-discretely refinable families. Thus the sufficient condition of
Theorem 2.12 is also necessary.

We shall discuss below the possibility to show that every discrete-Borel bimea-
surable mapping between complete metric spaces can be decomposed to a countable
(σ-discrete) family of Borel isomorphisms and a mapping with a σ-discrete range.
Since every projection along an analytic space is Souslin bimeasurable, we can-
not await much more than showing that every Souslin bimeasurable mapping is
related to such a projection up to a mapping with a σ-discrete range. We can
view the problem of preservation of almost discretely σ-decomposable families by
metric-analytic bimeasurable mappings as an attempt to relate all metric-analytic
bimeasurable mappings to projections of metric-analytic spaces along N

N due to
the following consequence of [37, Theorem 3.2].

Proposition 2.17. Let f : X → Y be a mapping of a metric-analytic space X
to a completely metrizable space Y . Then f is Souslin measurable and preserves
point-countable indexed families with a σ-discrete network if and only if there is a
discrete-Borel isomorphism h of X onto a metric-analytic set H ⊂ N

N × Y such
that f = p ◦ h, where p is the projection of H to Y restricted to H.
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We prove first the necessity of the existence of h. The space X is discrete-
Borel isomorphic to a metric-analytic subset A of DN for some discrete D by [17,
Theorems 5.6 and 6.7] applied to the completion of X. Thus we may assume
that X = A ⊂ DN. Let πX be the projection of X × Y to X and ψ be the inverse
mapping to the restriction of πX to the metric-analytic graph G ⊂ X×Y ⊂ DN×Y
of f . Then ψ is a discrete-Borel isomorphism (f is metric-analytic measurable, so
ψ is metric-analytic measurable and it obviously takes discrete families to discrete
families in G; since it is one-to-one, it is a discrete-Borel isomorphism by [17,
Theorem 7.4]). Applying the discrete-Borel isomorphism Ψ of [37, Theorem 3.2] to
the graph G of f , we may put h = Ψ ◦ ψ. Finally, we have that f = p ◦ h.

Conversely, p is continuous and takes metric-analytic sets in N
N × Y to metric-

analytic sets in Y (the projections of Souslin sets along N
N are Souslin in Y ). The

mapping h is a discrete-Borel isomorphism, and so also a metric-analytic measurable
mapping (we may use [17, Theorem 6.7]) which preserves point-countable families
with σ-discrete network, of the metric-analytic G onto H. This concludes the proof.

Continuous mappings f with the factorization of the same form and with h a
topological embedding were studied by Froĺık in [11] under the name S-maps.

If the Souslin measurable mapping f preserves almost discretely σ-decomposable
families as in Theorem 2.15, we can find a σ-discrete set D ⊂ Y such that f ¹

(X \f−1(D)) preserves point-countable indexed families with a σ-discrete network.
It is not difficult to check that a σ-discrete set D from the definition of almost
discrete σ-decomposability of f(D), where D is an arbitrary σ-discrete base of the
topology of X, works. So f ¹ (X \ f−1(D)) can be viewed as a projection along
N

N composed with a discrete-Borel isomorphism as in Theorem 2.17 for a fixed
σ-discrete D ⊂ Y if the conclusion of Theorem 2.16 holds.

2.5. Preservation of discrete-Borel sets. The characterization of discrete-Borel
sets as bi-Souslin in metric-analytic spaces (Theorem 2.5) and Theorem 2.12 give the
following sufficient condition for a mapping to be relatively discrete-Borel bimea-
surable.

Theorem 2.18. Let X be metric-analytic, Y a metrizable space, and f : X → Y a
discrete-Borel measurable one-to-one mapping preserving families with a σ-discrete
network. Then f is discrete-Borel bimeasurable.

Let us recall that absolute discrete-Borel spaces within metrizable spaces are
called metric-Luzin.

Theorem 2.19. A metrizable space L is metric-Luzin if and only if L is the image
of a one-to-one continuous mapping f : F → L, where F is a closed subset of DN

for some discrete space D, and f preserves the property of families of sets to have
a σ-discrete refinement.

This result is in [17, Theorem 5.6] and it can be deduced from Theorems 2.3 and
2.6(c).

As a corollary we have

Theorem 2.20. The class of metric-Luzin spaces is preserved by one-to-one
discrete-Borel measurable mappings which preserve the families with a σ-discrete
refinement.

However, the requirements on the mappings to be one-to-one (and to preserve
σ-discrete refinements) might seem to be too restrictive.
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Let us consider a continuous mapping f : X → Y between completely metrizable
spaces and assume that f takes discrete-Borel sets to discrete-Borel sets. Let D be
a discrete family of discrete-Borel subsets of X and ≺ be a strict well-ordering of
D. Consider FD = f(D)\{f(D′) : D′ ≺ D}. Now, similarly as before Problem 2.13
above, the disjoint family {FD : D ∈ D} is Souslin (even discrete-Borel) additive
in Y . Thus it has a σ-discrete refinement, which is also a σ-discrete refinement of
f(D). This might inspire a question related to the above Problem 2.14(b). Again,
under (SCω2), Fleissner’s results give the positive answer as above.

Problem 2.21. Let E be a family of discrete-Borel subsets of a completely metriz-
able space Y such that for any choice of discrete-Borel sets BE ⊂ E, E ∈ E, the
union

⋃
{BE : E ∈ E} is discrete-Borel. Does E have a σ-discrete network? Is it

point-countable outside of a σ-discrete set? (In other words, is it almost discretely
σ-decomposable?)

The positive answer to this question would allow us to get strong results on the
structure of discrete-Borel bimeasurable mappings.

Theorem 2.22 ([36, Theorem 3.1]). Let X and Y be complete metric spaces and
f : E ⊂ X → Y be a discrete-Borel measurable mapping of a discrete-Borel set E
in X to Y . Then the following are equivalent:

(a) f is discrete-Borel bimeasurable and f preserves almost discretely σ-decomposable
families.

(b) f(B) is discrete-Borel for every Gδ subset B of E and f preserves almost
discretely σ-decomposable families.

(c) {y ∈ Y : f−1(y) is not countable} is σ-discrete and f ¹ (X \ f−1(S)) pre-
serves families with a σ-discrete network.

(d) There are pairwise disjoint discrete-Borel subsets E0, E1, . . . of X such that
E =

⋃∞
n=0

En, f(E0) is σ-discrete, and f |En
is a discrete-Borel isomor-

phism for every n ∈ N.

Note that the condition f preserves almost discretely σ-decomposable families
is fulfilled if X is separable, and the theorem reduces to results of Luzin, Novikov,
and of Purves in this case (cf. [41, Theorem 8]).

Under the Fleissner’s axiom we have a positive solution of Problem 2.21 and it
gives the following stronger formulation of the theorem.

Theorem 2.23 (under (SCω2), [36, Theorem 3.2]). Let X and Y be complete
metric spaces and f : E ⊂ X → Y be a discrete-Borel measurable mapping of a
discrete-Borel set E in X to Y . Then the following are equivalent:

(a) f is discrete-Borel bimeasurable.
(b) f(B) is discrete-Borel for every Gδ subset B of E.
(c) S = {y ∈ Y : f−1(y) is not countable} is σ-discrete and f ¹ (X \ f−1(S))

preserves families with a σ-discrete network.
(d) There are pairwise disjoint discrete-Borel subsets E0, E1, . . . of X such that

E =
⋃∞
n=0

En, f(E0) is σ-discrete, and f |En
is a discrete-Borel isomor-

phism for every n ∈ N.

So another variant of Problem 2.21 can be formulated briefly.

Problem 2.24. Does Theorem 2.23 hold in ZFC?
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A positive answer in ZFC to the following question could be understood as a
partial answer to the previous ones.

Problem 2.25. Let f be a discrete-Borel bimeasurable mapping between completely
metrizable spaces. Is f Souslin bimeasurable?

Without any additional assumptions on the discrete-Borel bimeasurable map-
pings, we have only the following theorem on a σ-discrete decomposition of the
mapping from [36, Corollary 2.2] instead of the countable decomposition from parts
(d) of Theorems 2.22 and 2.23.

Theorem 2.26. Let X and Y be complete metric spaces, E be a discrete-Borel
subset of X, and f : E → Y be a discrete-Borel measurable mapping. Then f is
discrete-Borel bimeasurable if and only if

(a) there is a σ-discrete subset S of Y and there is a σ-discrete partition D of E\
f−1(S) to discrete-Borel sets such that f |D is a discrete-Borel isomorphism
for every D ∈ D, and

(b) {BD}D∈D is discrete-Borel additive whenever BD ⊂ f(D) are discrete-
Borel.

The implication (c) implies (d) in Theorem 2.22 uses a decomposition from [34,
Theorem 3.1] of Souslin subsets of X × N

N with countable sections.
We have a similar result for sets with σ-compact sections ([36, Theorem 3.3]),

which is a generalization of theorems of V. Arsenin, K. Kunugui (see [48, Theo-
rem 18.18]), J. Saint Raymond (see [59]), and Holický and M. Zelený (see [41, Main
Theorem]).

Theorem 2.27. Let X and Y be complete metric spaces and f : E ⊂ X → Y be a
discrete-Borel measurable mapping of a discrete-Borel set E in X to Y . Then the
following are equivalent:

(a) f(B) is discrete-Borel for every closed subset B of E and f preserves almost
discretely σ-decomposable families.

(b) {y ∈ Y : f−1(y) is not σ-compact} is σ-discrete and f preserves almost
discretely σ-decomposable families.

(c) There are discrete-Borel subsets E0, E1, . . . of X such that E =
⋃∞
n=0

En,
f(E0) is σ-discrete, and f |En

maps closed sets to discrete-Borel sets, and
f |En

has compact fibers (f |En
)−1(y), y ∈ Y , for every n ∈ N.

The variant of Theorem 2.26 with the axiom (SCω2) can be formulated similarly
as Theorem 2.23 above ([36, Theorem 3.4]).

Inspired by a theorem of J.P. Burgess and G. Hillard (for the theorem and
also for the definition of a hereditary co-analytic family of closed sets see [48,
Theorem 35.43]), we may ask the following question.

Problem 2.28. Let I∗ be a hereditary co-analytic family of closed subsets of N
N,

X be a completely metrizable space, and B ⊂ X ×N
N be a (discrete-)Borel set with

section Ax, x ∈ X, in I∗σ. Are there discrete-Borel sets Bn ⊂ X × N
N such that

B =
⋃
n∈N

Bn and all sections (Bn)x, x ∈ X, are in I∗?

So for the particular cases of families of finite sets and of compact sets we have
a positive answer (Theorems 2.22 and 2.27 above, or [34, Theorem 3.1] and [35,
Theorem 3.1], to which their proofs are reduced in [36]). It seems that a crucial
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problem is the lack of a method which would replace the boundedness principle for
co-analytic ranks (see [48, Theorem 35.22]).

There are also no results analogous to those of A. Louveau in [50] and [51] for
Borel sets with sections of additive Borel classes in X × N

N with X completely
metrizable which would be much stronger than the result on the decomposition of
sets with σ-compact sections.

There is still another result on preservation of metric-Luzin spaces under discrete-
Borel bimeasurable mappings f : X → Y which satisfy some condition in terms
of ”discrete-Borel classes” of subsets of X and Y , see [33, Theorem 4.4]. Since we
do not define the discrete-Borel classes here, we formulate only a particular case in
Theorem 2.35 below.

2.6. Preservation of Borel sets. Following the decompositions of the previous
section, we pose a problem.

Problem 2.29. Is a Borel measurable mapping f : X → Y between completely
metrizable spaces X and Y Borel bimeasurable if and only if there are pairwise
disjoint Borel sets E0, E1, . . . of X such that E =

⋃∞
n=0

En, f(E0) is σ-discrete,
and f |En

is a Borel isomorphism for every n ∈ N? Do they map open sets to sets
of a bounded Borel class?

Most answers are positive under the axiom (SCω2) by Theorem 2.23. It is
not clear that En’s can be chosen Borel even for mappings which preserve almost
discretely σ-decomposable families. The inverses to the Borel isomorphisms f |En

are of bounded class by Theorem 2.10. (We might also apply a deep theorem
of D. Fremlin, Hansell, and H.J.K. Junnila [7] saying that a Borel isomorphism
between metric spaces, not necessarily completely metrizable, has a bounded Borel
class.)

Let us make some more elementary observations concerning the boundedness of
the Borel class. We use the simple fact that a discrete family of Borel sets has a
Borel union if and only if its elements are of bounded Borel class.

Lemma 2.30. Let E be an almost discretely σ-decomposable family in a completely
metrizable space X such that

⋃
{E∗ : E ∈ E} is Borel for every choice of relatively

closed subsets E∗ of E ∈ E. Then E is A-additive, where A is some additive Borel
class.

Let S be a σ-discrete set in X such that the family D = {E \S : E ∈ E} is point-
countable with a σ-discrete network (in other words, discretely σ-decomposable).
For any choice of relatively closed sets (E \S)∗ in E \S, we have

⋃
{(E \S)∗ : E ∈

E} =
⋃
{(E \ S)∗ ∩ (E \ S) : E ∈ E} =

⋃
{E ∩ (E \ S)∗ : E ∈ E} \ S. Since each

E ∩ (E \ S)∗ is closed in E, the union
⋃
{E ∩ (E \ S)∗ : E ∈ E} is Borel. The space

X \ S is completely metrizable. If the D belongs to some bounded additive Borel
class then the same is true for E , and so we may assume without loss of generality
that S is empty.

By [15, Lemma 7] it is enough to show that all elements of E are of a bounded
additive Borel class. Let N =

⋃
n∈N

Nn be a network for E and all Nn be discrete.
Assume that all elements ofN are nonempty. Let us order the at most countable set
of elements of E which contain an N ∈ N to a sequence and denote by Nn(E, k),
E ∈ E , k ∈ N , the family of all elements N of Nn such that E is the k-th set
containing N . Put E∗

n(k) = E ∩
⋃
Nn(E, k) for E ∈ E . Consider an arbitrary
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family E0 ⊂ E . By our assumption, the union
⋃
{E∗

n(k) : E ∈ E0} is Borel (empty
set is closed in elements of E \ E0). It follows that the discrete family {E∗

n(k) :
E ∈ E} is Borel additive and so of a bounded additive Borel class α(n, k) for every
n, k ∈ N. All the sets E =

⋃
{E∗

n(k) : n, k ∈ N} ∈ E are of the additive Borel class
α = sup{α(n, k) : n, k ∈ N}. This concludes our proof.

Here we used implicitly the argument giving ”discrete σ-decomposability” (or
”σ-discrete decomposability” in other words) of point-countable families with a
σ-discrete network which was observed by E. Michael ([53, Lemma 3.2]).

Theorem 2.31. Let f : X → Y be a Borel bimeasurable mapping of a completely
metrizable space X to a completely metrizable space Y .

(a) If f takes open sets of some σ-discrete base U to an almost discretely σ-
decomposable family, or

(b) if the fibers f−1(y), y ∈ Y , are relatively compact in X,

then the images f(G) of open sets G ⊂ X are of a bounded Borel class.

The case (a) follows from the preceding lemma applied to E = f(U). We realize
that f has a Borel class by Theorem 2.10. Let B∗ be relatively closed in f(B)
for B ∈ U . Then {B ∩ f−1(B∗);B ∈ U} is a σ-discrete family of Borel sets of a
bounded class, so it is Borel additive. Thus {B∗ = f(B ∩ f−1(B∗)) : B ∈ U} is
Borel additive and the assumptions of Lemma 2.30 are verified.

The case (b) can be reduced to (a). Consider any base U =
⋃
n∈N

Un of X
such that each Un is discrete. Then f(Un) is Borel additive and point-finite. So
by Lemma 2.7 f(Un) has a σ-discrete network, and so f(U) is (almost) discretely
σ-decomposable. We may apply (a) now.

Inspired by Theorem 2.22, we ask

Problem 2.32. Let f : X → Y be a Borel measurable mapping between completely
metrizable spaces X and Y . Is f Borel bimeasurable if it takes Gδ sets in X to
Borel sets in Y ?

It is natural to ask some supplementary questions:

Problem 2.33. Let f : X → Y be a Borel bimeasurable mapping between com-
pletely metrizable spaces X and Y . Is it discrete-Borel bimeasurable? Is it Souslin
bimeasurable?

Problem 2.34. Is there a mapping β : [0, ω1) → [0, ω1) such that the sets En in
the decomposition of Theorem 2.22 can be found in the Borel class β(α) if f is Borel
bimeasurable and of class α between completely metrizable spaces?

This seems to be open even for mappings between Polish spaces.
The statements [33, Proposition 4.1 and Theorem 4.4] give another result on

preservation of Borel sets in a sense. It says, roughly speaking, that preservation
of relatively Borel sets implies absolute Borelness of the range under some assump-
tions.

Theorem 2.35. Let f : X → Y be a (discrete-)Borel bimeasurable mapping of
an absolute Borel set X within metric spaces onto a metric-analytic space Y which
maps sets of any additive or multiplicative class γ < ω1 to sets of the corresponding
class β + γ for some β < ω1. Then Y is absolute Borel in metric spaces.
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Indeed, the proof of [33, Proposition 4.1] works only with countable, and so
Borel, classes in this case. The existence of a Borel class α < ω1 of f follows from
Theorem 2.10. The statement of [33, Theorem 4.4] gives even some estimate on
the class of Y . Since it is countable in our case, we conclude that Y is Borel in its
completion (cf. the definition of the ”scattered-Borel classes” on pages 153-4 of the
quoted paper and the remark about Borel classes following it).

It is not difficult to deduce from Theorem 2.27, (b) implies (c), or directly from
[35, Theorem 3.1], that mappings with σ-compact fibers which fulfill (b) can be
decomposed as in (c) with E0 empty. There are similar theorems concerning de-
compositions of Fσ measurable mappings and of Fσ bimeasurable mappings due to
Hansell, Jayne, and Rogers.

Theorem 2.36 ([46, Theorems 5]; proof of [45, Theorem 1], cf. [26, Theorem 3]).

(a) Let f : X → Y be a mapping between completely metrizable spaces X and
Y such that f−1(F ) is Fσ in X for every Fσ set F in Y , i.e. f is Fσ
measurable. Then there are closed sets En ⊂ X such that the restrictions
of f to each En are continuous.

(b) Let f : X → Y be an Fσ bimeasurable surjective mapping between metric-
analytic spaces X and Y which takes discrete families to almost discretely
σ-decomposable families. Then there are closed sets En ⊂ X such that the
restriction of f to each En is a closed continuous mapping.

Preservation of absolute Borel spaces was proved in [40, Theorem 4.2] for Fσ
bimeasurable mappings without additional assumptions:

Theorem 2.37. Let f : X → Y be an Fσ bimeasurable mapping of an absolute
Borel metrizable space X onto a metric-analytic space Y . Then Y is absolute Borel.

It seems to be of some interest whether some analogies for Mσ measurable or
Mσ bimeasurable mappings hold as well ifM is, e.g., a multiplicative Borel classe
higher than F .

The following interesting problem of Hansell, which is slightly related to the pre-
ceding once on the necessary conditions of some Souslin or discrete-Borel additive
families, is still open.

Problem 2.38. Let A be a point-countable and Borel additive family, or discrete-
Borel additive family, of subsets of a completely metrizable space. Does A have a
σ-discrete refinement?

Hansell showed in [20, Theorem 3.1(b)] that the conclusion is not provable for
point-countable Souslin additive families in ZFC. Fleissner showed in [5] that under
the consistency of (SCω2) the conclusion is true even for all point-countable Souslin
additive families. There are some partial positive answers to this problem. The
results of Hansell (in [21, Theorem 3.3] for point-countable Fσ additive families)
and J. Spurný (in [60, Theorem 6] for Gδ additive families) were recently improved
by Spurný and Zelený [62, Theorem 1.1].

Theorem 2.39. Let A be a point-countable Fσδ additive family in a metric-analytic
space. Then A has a σ-discrete refinement.

3. Extensions of the descriptive set theory to Tychonoff spaces
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3.1. Several types of completeness of Tychonoff spaces. Let us recall that
several notions of completeness of Tychonoff spaces can be viewed as an absolute
property (within Tychonoff spaces). We say that a Tychonoff space is absolute P if
it is in P (or it has the property P) in any Tychonoff space to which it is embedded.

Theorem 3.1. The following statements on a Tychonoff space X are equivalent:

(a) X is Čech-complete, i.e., Gδ in its Stone-Čech compactification.
(b) X is absolute Gδ in its closure, i.e., it is absolutely an intersection of a

closed and a Gδ set.
(c) X is Gδ in its closure in a compact space.
(d) X admits a complete sequence of open covers.

These results can be found in [4, Theorem 3.9.1]. The equivalence of (a) and (d)
easily follows from [4, Theorem 3.9.2].

We call a Tychonoff space X P-K-complete if X admits a complete sequence
of covers with the property P. So (d) can be restated by saying ”X is open-K-
complete”.

The spaces of the next theorem form a larger class than Čech-complete spaces
and are known under various names.

Let us recall that a family D of subsets of a Tychonoff space X is scattered if it
is disjoint and if every nonempty subfamily E ⊂ D contains a nonempty element
E ∈ E which is relatively open in

⋃
E .

Theorem 3.2 ([38, Theorem 2.5]). The following statements on a Tychonoff space
X are equivalent:

(a) X is absolute Hδ.
(b) X is Hδ in a compact space.
(c) X admits a complete sequence of scattered covers, i.e., X is scattered-K-

complete.

A disjoint family D of subsets of a Tychonoff space is isolated (or relatively
discrete) if each D ∈ D is relatively open in

⋃
D. Thus we call a Tychonoff space

isolated-K-complete if it admits a complete sequence of isolated covers. Naturally,
isolated-K-complete spaces form a subclass of Čech-complete ones.

3.2. Absolute S(F), S(B), and S(H) spaces and complete sequences of

covers. Absolute S(F) spaces are called K-analytic. This class was introduced
and studied by several authors under several names using different descriptions
which turned out to be equivalent [42] and [8, Theorem 9.3]. We shall mention the
descriptions of G. Choquet, M. Sion, and Froĺık in Section 3.4, which is devoted to
parametrizations of generalized analytic spaces.

Theorem 3.3 ([8, Theorems 4.11 and 9.3]). The following properties of a Tychonoff
space A are equivalent:

(a) A is an absolute S(F) space.
(b) A is in S(F(K)) in a compact space K.
(c) A is the projection of a Lindelöf Čech-complete subspace of A× N

N.
(d) A admits a complete sequence of countable covers.

As a consequence of (c) we get the following two corollaries.

Corollary 3.4. Every K-analytic space is Lindelöf.
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Example 3.5. By M. Talagrand [64], if X is a weakly compactly generated (WCG)
Banach space and τw is its weak topology, then the space (X, τw) is K-analytic
(even Kσδ in (X∗∗, w∗)). Using this, Talagrand showed that (X, τw), for a weakly
compactly generated Banach space X, is Lindelöf. He also showed that there are
non WCG spaces such that (X, τw) is Lindelöf. These results gave a full answer
to a conjecture of H.H. Corson. Talagrand also posed the problem whether the
K-analyticity of the weak topology of a Banach space implies that it is Kσδ when
embedded in the canonical way to the second dual with the weak star topology
w∗. The negative answer to this question was given recently by S.A. Argyros,
A.D. Arvanitakis, and S.K. Mercourakis in [1].

All the notions recalled so far bring a serious limitation to the case of Banach
spaces endowed with their weak topology. The metric-analyticity, and so metriz-
ability, implies that X is finite-dimensional. Since K-analytic spaces are Lindelöf,
only those weak topologies which are Lindelöf can be K-analytic. L. Vašák proved
that weakly K-analytic Banach spaces (even weakly countably determined) have
an equivalent Kadec norm. However, there are also nonseparable spaces with non-
Lindelöf weak topology with a Kadec norm. G.A. Edgar [3] showed that such spaces
with their weak topology are Borel in the weak-star topology of their second dual
(see Hansell [22] for further examples and references).

Example 3.6. If the Banach space X admits an equivalent norm with the Kadec
property, i.e., if the norm and the weak topologies coincide on the unit sphere,
then X endowed with its weak topology is Borel in X∗∗ endowed with the weak-
star topology τw∗ . In fact, it is of the form

⋂
k∈N

⋃
n∈N

(Fkn ∩ Gkn), where Fkn ∈
F(X∗∗, w∗) and Gkn ∈ G(X

∗∗, w∗) ([23, Theorems 1.5 and 1.4(b)]). Thus it is
absolute Borel. In fact X is Borel in the σ-compact, and so absolute Borel, space
(X∗∗, τw∗). So it is absolute Borel by [58, Theorem 4.6, (i) implies (ii)], or also by
[39, Corollary 14].

The class of absolute S(B) spaces was studied by Fremlin, see [43, 8. Appendix],
under the name Čech-analytic spaces in an unpublished remark [6] and we have the
following theorem. A family I is relatively open if each I ∈ I is relatively open in⋃
I. Countable unions of relatively open families are called σ-relatively open. Note

that disjoint relatively open families are isolated (relatively discrete).

Theorem 3.7. The following properties of a topological space A are equivalent:

(a) A is an absolute S(B) space.
(b) A is an S(B(K)) set in a compact space K.
(c) A is the projection of a Čech-complete subspace of A× N

N.
(d) A admits a complete sequence of σ-relatively open covers.

The equivalence of (a), (b), and (c) follows from [22, Theorem 5.3]. (The impli-
cation (b) implies (a) can be also proved using that continuous preimages preserve
S(B) and that absolute S(B(K)) sets are preserved by perfect mappings, see [27]
or [39, Corollary 13]). The equivalence of (c) and (d) was remarked by Froĺık in
[10], for its proof see, e.g., [32, Theorem 3].

Hansell introduced in [23], which appeared as a preprint already in 1989, the
notion of ”almost-K-analytic spaces” which we call ”scattered-K-analytic” now,
cf. [22], [29]. The class of these spaces is larger than that of Čech-analytic spaces
and it turns out that it is more suitable for applications of some methods of the
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descriptive set theory. The equivalences below can be found in [31, Theorems 1 and
2] and [32, Theorem 1].

Theorem 3.8. The following properties of a topological space A are equivalent:

(a) A is an absolute S(H) space.
(b) A is an S(H(K)) subset of a compact space K.
(c) A is the projection of a scattered-K-complete subspace of A× N

N.
(d) A admits a complete sequence of σ-scattered covers.

A topological space (X, τ) is σ-fragmented by a metric ρ if, for every positive
ε, there is a σ-scattered partition of X to sets of ρ-diameter less than ε. We have
the following relation between weakly scattered-K-analytic Banach spaces and σ-
fragmentability.

Example 3.9 ([23, Theorem 1.10] and [32, Theorem 6]). Let X be a Banach space.
Then the following are equivalent:

(a) (X, τw) is scattered-K-analytic.
(b) (X, τw) is σ-fragmented by the norm of X.
(c) The identity of (X, ‖ · ‖) onto (X, τw) maps discrete families to families

with a σ-scattered network.
(d) (X, τw) has a σ-scattered network.

So σ-fragmentable Banach spaces with their weak topology are examples of
scattered-K-analytic spaces.

Let us recall that a space is (σ-isolated)-K-complete if it admits a complete
sequence of σ-isolated covers. We have the following implication.

Theorem 3.10. If A is the projection of an isolated-K-complete subspace of A×
N

N, then A is (σ-isolated)-K-complete. The converse implication does not hold in
general.

The implication can be found in [32, Theorem 2]. The counterexample was shown
to me by Junnila and J. Pelant (the example can be found in [22, Example 6.22]).

We may ask the following question.

Problem 3.11. Does some descriptive property of sets characterize all (σ-isolated)-
K-complete subspaces of compact spaces?

We see immediately that

Theorem 3.12.

(a) Every K-analytic space is (σ-isolated)-K-complete.
(b) Every (σ-isolated)-K-complete space is Čech-analytic.
(c) Every Čech-analytic space is scattered-K-analytic.

3.3. Descriptive properties of generalized bi-analytic sets. Froĺık showed,
using multivalued parametrizations of K-analytic spaces, that some methods of the
classical descriptive set theory apply to K-analytic spaces. As an example we state
a particular version of the separation principle. Let us recall that B is a Baire
set in X if it belongs to the smallest σ-algebra containing zero sets of continuous
functions.

Theorem 3.13. A subset B of a K-analytic space A is a Baire set if and only if
B and A \B are K-analytic.
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It is still a challenge to answer satisfactorily the following question.

Problem 3.14. Is there some nontrivial characterization of spaces X such that X
and K \X are Čech-analytic subspaces of some compact space K?

We may characterize the ”bi-S(H)” subspaces, of a scattered-K-analytic space,
as those which belong absolutely to the σ-algebra of scattered-Borel sets. By this
we understand the smallest σ-algebra of subsets of X which contains all Borel sets
and which is closed with respect to the unions of scattered families of its elements.

Theorem 3.15 ([22, Theorem 6.28] and [29, Theorem 2]). B is scattered-Borel in
a scattered-K-analytic space A if and only if B and A\B are scattered-K-analytic.

We have the following description of bi-(σ-isolated)-K-complete spaces. We de-
fine isolated-Borel sets as the elements of the smallest σ-algebra of subsets of X
which contains all Borel sets and which is closed with respect to the unions of
isolated families of its elements.

Theorem 3.16. If B ⊂ X and X \ B are (σ-isolated)-K-complete, then B is
isolated-Borel in X.

The proof can be received following closely that in [22, Theorem 6.28]. Let
Cn and Dn be sequences of σ-isolated covers by B and X \ B, respectively. We
may assume without loss of generality that all Cn’s and Dn’s are partitions, since
arbitrary refinements preserve completeness. We may also assume that Cn+1 refines
Cn and Dn+1 refines Dn by considering {C1∩· · ·∩Cn : Ci ∈ Ci, i = 1, . . . , n} instead
of Cn, and similarly for Dn’s. Assuming that B and X \B cannot be separated by
an isolated-Borel set, we deduce using [22, Lemma 6.27] that some pair of C1 ∈ C1
and D1 ∈ D1 cannot be separated. Using [22, Lemma 6.27] inductively to the pairs
Cn, Dn, we get centered sequences Cn ∈ Cn and Dn ∈ Dn such that the pairs Cn
and Dn cannot be separated for every n ∈ N. However, the completeness implies
that the closures of Cn’s and of Dn’s converge to disjoint compact sets, say K and
L (see, e.g., [31, Proposition 4.1] for the last argument). These can be separated
by disjoint open sets G ⊃ K and H ⊃ L. However, for sufficiently large n’s the
closure of Cn is a subset of G and the closure of Dn is a subset of H, so Cn and
Dn are separated, a contradiction.

To get the converse implication, more exactly, to get that isolated-Borel sets
(or even open sets only) are (σ-isolated)-K-complete in a (σ-isolated)-K-complete
space, we need something more, e.g., that every family of open sets in X has a
σ-isolated refinement.

Example 3.17. [0, ω1) is not (σ-isolated)-K-complete, while it is, as an open set,
isolated-Borel in [0, ω1].

Let us derive it from the following auxiliary statement:

Lemma 3.18. If a stationary set S ⊂ [0, ω1) is covered by a σ-isolated family E of
subsets of [0, ω1), then some E ∈ E is stationary.

Let us suppose the validity of the lemma and have a complete sequence of σ-
isolated covers Cn of [0, ω1). Put C0 = [0, ω1) and suppose that we have C0, C1 ∈
C1, . . . , Cn−1 ∈ Cn−1 for some n ∈ N such that C0 ∩ · · · ∩ Cn is stationary, in
particular uncountable. Since every compact set in [0, ω1) is countable and has a
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countable open neighbourhood, the sequence C1 ∩ · · · ∩ Cn cannot converge to a
compact subset of [0, ω1), a contradiction (cf. [31, Proposition 4.1] again).

To prove Lemma 3.18 we realize first that we may assume without loss of gener-
ality that E is isolated and uncountable since countable unions of nonstationary sets
are nonstationary due to the fact that countable intersections of closed unbounded
sets are closed unbounded in [0, ω1). We may thus assume that E = {Eα : α < ω1},
where the relatively open sets Eα which form the cover of S are nonempty and
pairwise disjoint. We may find inductively aα, sα, bα ∈ [0, ω1) for α < ω1 such that

(a) aα < sα < bα < aβ for α < β < ω1, and
(b) sα ∈ Eα.

Having it, we put F = {sα : α < ω1} \
⋃
{(aα, bα) : α < ω1}. Note that F is closed

and since for every limit ordinal α < ω1 the ordinal sup {sβ : β < α} is greater than
all bβ , β < α, and at most equal to aα, F is unbounded in [0, ω1). Therefore there
is an s ∈ S∩F . It differs from all sα and therefore it has in each its neighbourhood
infinitely many sα’s, which is a contradiction with the assumption that E is isolated
in S.

Problem 3.19. Is it possible to characterize the σ-algebra of bi-(σ-isolated)-K-
complete spaces as the smallest σ-algebra containing some type of sets and closed
with respect to some operations?

3.4. Parametrizations of generalized analytic spaces. Now we state the equiv-
alent parametrizations of K-analytic spaces mentioned in Section 3.2. K-analytic
spaces were introduced by Choquet as continuous images of an Fσδ subspace of
a compact space, by Sion as continuous images of a Kσδ subspaces of a space,
by Froĺık as images of Polish spaces under upper semicontinuous compact-valued
mappings, and also as spaces admitting a complete sequence of countable covers.
A mapping f which takes values of X to compact sets in Y is called upper semi-
continuous and compact-valued if the sets {x ∈ M : f(x) ⊂ G} are open for open
sets G in Y . We abbreviate this property of set-valued mappings to usc-K. Let us
state some characterizations explicitly.

Theorem 3.20. The following properties of a topological space A are equivalent:

(a) A is an absolute S(F) space.
(b) A is a continuous image of a Lindelöf Čech-complete space.
(c) A is the image of a Polish space under a usc-K mapping.

The equivalence of (a) and (c) can be found in [8, Theorem 4.11]. This together
with the equivalence of (b) can be found in [44, Theorem 2.8.1] or also in [22,
Theorem 3.1].

Realizing that the composition of a continuous and an usc-K mapping (or of two
usc-K mappings) is usc-K again, we get from (c) above

Corollary 3.21. Continuous (or usc-K) images of K-analytic spaces are K-analytic.

Čech-analytic spaces are projections of Čech-complete spaces along N
N by The-

orem 3.7.

Problem 3.22. Is there some property of families of sets such that continuous
mappings preserving that property of families preserve Čech-analytic spaces?

As we already noted, scattered-K-analytic spaces are better suited for applying
the methods of the descriptive set theory.
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Theorem 3.23. The following properties of a topological space A are equivalent:

(a) A is absolute S(H).
(b) A is the image of a completely metrizable space M (which is a closed subset

of DN for some discrete D) under a usc-K mapping which preserves families
having a σ-scattered refinement.

(c) A is the image of a completely metrizable space M (which is a closed subset
of DN for some discrete D) under a usc-K mapping which preserves point-
countable indexed families having a σ-scattered network.

A proof of the equivalence of (a) and (c) follows from [32, Theorem 1] and
Theorem 2.3. The condition (b) is weaker than (c) and the implication (b) implies
(a) follows from [31, Theorem 1, (c) implies (d)].

By (b) we immediately get

Corollary 3.24. Images of scattered-K-analytic spaces by continuous (or usc-K)
mappings which preserve families with a σ-scattered refinement are scattered-K-
analytic.

We may define isolated-K-analytic spaces (the terminology follows [22] and [29])
as the images of completely metrizable spaces by usc-K mappings which preserve
point-countable indexed families with a σ-isolated network. This class of spaces
was independently introduced by Froĺık [10] and by Hansell [23] (who called them
descriptive-K-spaces). It is obviously preserved by continuous (or only usc-K) map-
pings which preserve point-countable indexed families with a σ-isolated network.

Example 3.25 ([23, Theorem 1.5]). All Banach spaces admitting an equivalent
Kadec norm are isolated-K-analytic.

Theorem 3.26. Let us consider the following statements:

(a) A is isolated-K-analytic.
(b) A is (σ-isolated)-K-complete (it admits a complete sequence of σ-isolated

covers.
(c) A is the projection of an isolated-K-complete subspace of A× N

N.

Then (a) implies (b), (c) implies (a), and the implication (b) implies (c) does not
hold in general.

The positive results can be found in [32, Theorem 2]. The already mentioned
example [22, Example 6.22] gives the negative statement. It seems that the following
question may still have a positive answer.

Problem 3.27. Does (a) imply (c) in the above theorem?

3.5. Preservation of generalized analytic spaces. We saw already as immedi-
ate Corollaries 3.21 and 3.24 of some parametrizations of the corresponding spaces,
or of the very definition of isolated-K-analytic spaces above that these types of
spaces are preserved by continuous (or usc-K) mappings with the relevant property
of preservation of some kind of families. We could again ask what additional prop-
erty, in place of the mentioned preservation of suitable families, in the last two cases
is necessary. Since many questions are open even for metrizable spaces (at least in
ZFC), we limit ourselves to one-to-one mappings, which are fully understood in the
metrizable case.
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Problem 3.28. Let f : X → Y be a continuous one-to-one mapping between
compact spaces X and Y which takes S(H) sets (or isolated-K-analytic subspaces)
to S(H) sets (or to isolated-K-analytic subspaces). Does f preserve families with
a σ-scattered refinement (or σ-isolated refinement)?

We saw in the metrizable case that the investigation of necessary conditions for
bimeasurability lead to the study of suitably additive families of sets. We may
again note that f as in the problem takes scattered (isolated) families of S(H) sets
(isolated-K-analytic sets) to S(H) (isolated-K-analytic) additive disjoint families.
Thus the problem in other words consists in the question whether such additive
disjoint families have a σ-scattered (or σ-isolated) refinement. The only positive
results in this direction that we know so far are proved in [30, Theorem 2] under
the assumption that there is no (two-valued) measurable cardinal.

Theorem 3.29 (nonexistence of a measurable cardinal).

(a) Let A be a disjoint scattered-K-analytic additive family in a Tychonoff space
X. Then A has a σ-scattered network.

(b) Let A be a disjoint isolated-K-analytic additive family in a Tychonoff space
X. Then A has a σ-isolated network.

We however do not know the answers to the following questions. The first one
is just a reformulation of the preceding problem.

Problem 3.30.

(a) Can it be proved in ZFC that every S(H) (or isolated-K-analytic) additive
family of pairwise disjoint sets in a compact space have a σ-scattered (or
σ-isolated) network?

(b) Can the same be proved if the family is not pairwise disjoint but just point-
finite even under the nonexistence of the measurable cardinal?

Related questions concerning just S(F) additivity are much easier to handle:

Theorem 3.31 ([12, Theorem 1]). Let f : M → X be an usc-K mapping of a
complete metric space M to a Tychonoff space X. If A is a point-finite S(F(X))
additive family in X, then the family {f−1(A) = {t ∈ M : f(t) ∩ A 6= ∅} : A ∈ A}
indexed by A’s is point-countable and has a σ-discrete network.

As a corollary we get using the corresponding parametrizations:

Corollary 3.32.

(a) Point-finite S(F) additive families in K-analytic spaces are countable.
(b) Point-finite S(F) additive families in isolated-K-analytic spaces have a σ-

isolated network.
(c) Point-finite S(F) additive families in scattered-K-analytic spaces have a

σ-scattered network.

The Hansell’s theorem on point-countable Fσ additive families has the following
topological variant by Spurný ([61, Theorem 4.2]):

Theorem 3.33. Let E be a point-countable Fσ additive cover of a scattered-K-
analytic space. Then E has a σ-scattered refinement.

We do not have any analogy of Theorem 2.15 which implies that the metric-
analytic spaces are preserved by perfect mappings. Therefore the next results (see
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[39, Corollaries 7 and 13] for both of them, the second one was proved already in
[27]) may be useful.

Theorem 3.34. Let f : X → Y be a perfect mapping (continuous closed with
compact fibers) of X onto Y .

(a) If X is scattered-K-analytic then Y is also scattered-K-analytic.
(b) If X is Čech-analytic then Y is also Čech-analytic.

So far we discussed the preservation of our generalized analytic spaces by some
continuous (or usc-K) mappings. The natural question about suitably measurable
mappings f : X → Y seems to be not so easy to answer. The standard method
of studying the restriction of the continuous projection to Y of the graph G of f
needs to derive the appropriate analyticity of G. Thus using this method we can
study only mappings to metrizable spaces (or to spaces with suitable networks).

For K-analytic spaces we have a result of Froĺık [9, Theorem 1]:

Theorem 3.35. Let X be K-analytic, Y be metrizable, and f : X → Y be S(F)
measurable (or just Baire measurable). Then the graph of f and f(X) are K-
analytic. If f−1(B) is Baire in X, then B is Baire in f(X).

Note that the preimages of Baire, or even all bi-Souslin, subsets of Y are bi-
Souslin, and therefore Baire by the separation principle (Theorem 3.13).

In [37, Theorem 2.8] we use scattered-analytic for scattered-K-analytic with a
σ-scattered network and isolated-analytic for isolated-K-analytic (equivalently, (σ-
isolated)-K-complete in this case) with a σ-isolated network. These classes of spaces
were introduced in [23] under the name almost descriptive (descriptive) spaces and
our terminology can be found in later papers, e.g., [22] or [29]. See also Theo-
rem 3.45 and the references below.

Theorem 3.36 ([37, Theorem 2.8]). Let X and Y be scattered-analytic, f : X →
Y be scattered-analytic measurable, and f preserves the point-countable indexed
families with a σ-scattered network. Then the graph of f and f(X) are scattered-
analytic.

If we replace ”scattered” by ”isolated”, the statement remains valid.

The analogical result with X just scattered-K-analytic and the mapping S(H)
measurable can be proved following the proofs in the quoted paper. It would be
nice to prove analogical result for more general spaces Y .

The ”separation” theorems give possibilities to get information about the de-
scriptive properties of the images of some continuous mappings to Tychonoff spaces
and some measurable mappings to metrizable spaces again. The case of K-analytic
(and ”K-Luzin spaces”) is fully understood (see [8, Theorem 7.7]). We are not
going to discuss the other cases here. There are however some results concerning
Borel sets which are of different flavour and we point out some of them.

3.6. Preservation of Borel sets. M. Raja studied in [58] the description of ab-
solute Borel spaces. The key notion of his study is the notion of a nicely be-
having subclass of Borel measurable mappings called p-Borel mappings. Let us
recall that f : X → Y is p-Borel if f−1(G(Y )) has a network N of the form
N = {Bn ∩ U : U ∈ G(X), n ∈ N} for some Borel sets Bn in X. He shows
that absolute Borel spaces are characterized by continuous parametrizations ([58,
Theorem 4.6]):
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Theorem 3.37. A Tychonoff space B is absolute Borel if and only if there is a
Čech-complete space C and a continuous bijective mapping f : C → B with a
p-Borel inversion f−1.

As a consequence of his investigation Raja obtains the following result on preser-
vation in [58, Theorem 4.13]:

Theorem 3.38. If X is absolute Borel and f : X → Y is a bijection of X to Y
such that both f and f−1 are p-Borel, then Y is absolute Borel.

We already referred in Example 3.6 above to another result of [58, Theorem 4.6]:

Theorem 3.39. A Tychonoff space is absolute Borel if and only if it is Borel in
a compact space. Consequently, all Borel subsets of an absolute Borel space are
absolute Borel.

The results of Holický and Spurný in [39] are of a different nature. They are
concerned with preservation by perfect mappings. We already referred to another
possibility of getting the preceding theorem using them. As an immediate conse-
quence of [39, Corollary 15] we get the following result:

Theorem 3.40. Absolute Borel spaces are preserved by perfect mappings.

We have an elementary observation related to the Borel bimeasurability of par-
ticular mappings. It gives a well known example which concerns the norm and
the week topologies of Banach spaces. We use that isolated (relatively discrete)
families of Borel sets of a bounded class have Borel unions (see [23, Lemma 3.3],
or also [22, Theorem 6.2], for the exact statement with the modified definition of
Borel classes for nonmetrizable topological spaces). We formulate the result and
an example below.

Lemma 3.41. Let E ⊂ A, where A is an additive Borel class containing open and
closed sets in X. If E has a σ-isolated refinement N , then

⋃
E is in A.

LetN =
⋃
n∈N

Nn, where eachNn is isolated. Put N̂ = N\
⋃
{N ′ ∈ Nn : N ′ 6= N}.

We choose an E(N) ∈ E such that N ⊂ E(N) for every N ∈ N . Then the

family N̂ ∩ E(N) is σ-isolated and consists of Borel sets of class A. Therefore⋃
E =

⋃
{E(N) : N ∈ N} ∈ A.

Proposition 3.42. Let f : X → Y be a mapping between topological spaces X and
Y which takes elements of some open base U of X to sets of a fixed family A, which
is closed with respect to the unions of σ-isolated subfamilies, to finite intersections,
and contains closed and open sets (e.g., an additive Borel class). Let f(U) have a
σ-isolated network N . Then f(G) is in A for every open set G ⊂ X. In particular,
if f is one-to-one and A is a Borel class, then f is Borel bimeasurable.

Let G ⊂ X be open. Then f(G) =
⋃
f(UG), where UG = {U ∈ U : U ⊂ G}.

The family f(UG) belongs to A and has a σ-isolated refinement. By Lemma 3.41
above, its union f(G) is in A.

The particular case of the identity mapping of a Banach space (X, ‖ · ‖) onto
(X, τw) is of particular interest. There are further results on the coincidence of Borel
sets in the norm and weak topologies, see [55, Proposition 1.5] or [56, Corollary 2.7].

Problem 3.43. Let X be a Banach space such that (X, τw) is scattered-K-analytic.
Is it true that every Borel set in the norm of X is weakly Borel?
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A question of J. Oncina whether a Banach space in which the σ-algebras of norm
and weak Borel sets coincide are necessarily scattered-analytic was answered by
W. Marciszewski and Pol [52]. They showed that the negative answer is consistent
with ZFC.

Problem 3.44. Is there an example in ZFC of a Banach space which is not
scattered-analytic in the weak topology such that the Borel σ-algebras in the norm
and weak topologies coincide?

3.7. Subclasses of absolute S(H) spaces. It would be optimal to have a the-
ory for a class containing the others (this could be the class of absolute S(H),
i.e., scattered-K-analytic, spaces among those we studied here), to distinguish the
smaller classes by some characteristic properties and derive results on them using
these properties and facts on the largest class. However, this seems to be hopeless.
There are only a few results distinguishing smaller classes in the larger once in this
spirit, and it concerns rather some better behaving proper subclasses of the above
mentioned absolute S(H) or isolated-K-analytic spaces.

Theorem 3.45.

(a) If A is scattered-K-analytic with a σ-scattered network (A is scattered-
analytic), then X is the image of a complete metric space under a con-
tinuous mapping which preserves point-countable indexed families with a
σ-scattered network. Equivalently, X admits a complete sequence of σ-
scattered networks.

(b) If A is scattered-K-analytic with a σ-isolated network, then X is the image
of a complete metric space under a continuous mapping which preserves
point-countable indexed families with a σ-isolated network (A is isolated-
analytic). Equivalently, X admits a complete sequence of σ-isolated net-
works.

(c) If A is scattered-K-analytic and has a countable network, then X is a con-
tinuous image of a Polish space (such topological spaces are often called
”analytic” even if nonmetrizable). Equivalently, X admits a complete se-
quence of countable networks.

(d) If A is scattered-K-analytic and separable metrizable, then it is analytic.

The proofs maybe deduced from [32, Theorem 5 and Proposition 5].

Example 3.46. If a Banach space X admits an equivalent norm with the Kadec
property, then the weak topology onX has a σ-isolated network ([23, Theorem 1.5]).

By [23, Theorem 1.2] such spaces admit weakly σ-isolated network for the norm
open sets. It follows that they admit a complete sequence of σ-isolated networks.
In particular, the weak topology of any weakly K-analytic Banach space (or of
any Eberlein compact space) is isolated-analytic. These and other examples are
discussed in [23] after Theorem 1.5.

The problem on distinguishing K-analytic spaces among Čech-analytic spaces
goes back to Fremlin who received a partial answer to it (see [43, 8. Appendix]):

Theorem 3.47. Let X be Čech-analytic and hereditarily Lindelöf. Then X is
K-analytic.

We might prove this theorem using Theorem 3.7. There is a complete sequence
of σ-relatively open covers Cn of X. Since X is hereditarily Lindelöf, each Cn has
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a countable refinement (subcover). Thus we get a complete sequence of countable
covers and use Theorem 3.3.

Problem 3.48. Is there some nontrivial characterization of Čech-analytic spaces
among all scattered-K-analytic spaces?

The same for K-analytic spaces among all Čech-analytic, or all scattered-K-
analytic, spaces?

Some results, e.g., for mappings between isolated-Luzin or scattered-Luzin spaces,
can be deduced from those on mappings between complete metric spaces (cf. [37,
Theorem 3.1] about uniformization, [37, Theorem’s 5.2 and 5.4 ] on ”generalized
projections”, or [37, Theorem’s 6.1 and 6.2] on fibers of bimeasurable mappings).

The author thanks J. Spurný and O. Kalenda for their help during the prepara-
tion of this text.
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[31] P. Holický, Luzin theorems for scattered-K-analytic spaces and Borel measures and Borel
measures on them, Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), pp. 395 – 413.
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[60] J. Spurný, G-delta–additive families in absolute Souslin spaces and Borel measurable

selectors, Topology Appl. 154 (2007), 2779–2785.

[61] J. Spurný, F-sigma–additive covers of Čech complete and scattered-K-analytic spaces,
Fund. Math. 199 (2008), 131–138.
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