
JACOBIANS OF SOBOLEV HOMEOMORPHISMS

STANISLAV HENCL AND JAN MALÝ

Abstract. Let Ω ⊂ Rn be a domain. We show that each homeomor-
phism f in the Sobolev space W 1,1

loc (Ω, Rn) satisfies either Jf ≥ 0 a.e or
Jf ≤ 0 a.e. if n = 2 or n = 3. For n > 3 we prove the same conclusion

under stronger assumption that f ∈W 1,s
loc (Ω, Rn) for some s > [n/2] (or

in the setting of Lorentz spaces).

1. Introduction

In this paper we address the following issue. Suppose that Ω ⊂ Rn is
a domain and that f : Ω → Rn is a homeomorphism of the Sobolev class
W 1,s

loc (Ω; Rn), s ≥ 1. Here W 1,s
loc (Ω; Rn) consists of all locally s-integrable

mappings of Ω into Rn whose coordinate functions have locally s-integrable
distributional derivatives. Is it true that the jacobian Jf (the determinant of
the matrix of derivatives) is either non-negative almost everywhere or non-
positive almost everywhere? It is well-known that every homeomorphism on
the domain is either sense-preserving or sense-reversing (see Preliminaries for
the definition) and therefore we can ask whether each sense-preserving home-
omorphism in the Sobolev space W 1,s

loc satisfies Jf ≥ 0 almost everywhere.
Roughly speaking, we are interested in the question whether topological and
analytical definitions of orientation lead to the same result.

Our research is motivated by our interest in geometric function theory,
where the nonnegativity of the jacobian is a standing assumption. We would
like to know that this is not an essential restriction at least for homeomor-
phisms. Note that recent developments in geometric function theory find
new inspiration in nonlinear elasticity and other problems of calculus of
variations. For an overwiew of the field, discussion of interdisciplinary links
and further references see [7].

The problem is mostly formulated as a question whether the Jacobian of
a Sobolev homeomorphism can change the sign on a set of positive measure.
We know it from Haj lasz [5], who constructed (not yet published) exam-
ples of a.e. approximatively differentiable homeomorphisms with Jacobian
of alternating sign. However, their gradient is not integrable, so they are
not Sobolev mappings. The problem has been also explicitly formulated in
[11]. Let us mention some further difficulties we should keep in mind. There
exists a Sobolev (even Lipschitz) homeomorphism with Jacobian vanishing
on a set of positive measure (see [8] or [7], Subsection 6.5.6). For 1 ≤ s < n,
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there exists a mapping f ∈ W 1,s(B(0, 1); Rn) ∩ C(B(0, 1); Rn) such that
f coincides with the identity on ∂B(0, 1) but Jf < 0 a.e., see [12]. This
mapping, however, is not a homeomorphism.

A full correspondence of topological and analytical definitions of orienta-
tion would mean simultaneous validity of the following assertions:

Conjecture A. Let Ω ⊂ Rn be an open set and f ∈W 1,1
loc (Ω,Rn) is a sense

preserving homeomorphism. Then Jf ≥ 0 a.e.

Conjecture B. Let Ω ⊂ Rn be an open set and f ∈ W 1,1
loc (Ω,Rn) is a

homeomorphism. If Jf ≥ 0 a.e., then f is sense preserving.

If Conjecture A is true, then an eventual counterexample to Conjecture
B should satisfy Jf = 0 a.e.

It is clear that homeomorphism of finite distortion (see [7] for the def-
inition and basic properties) cannot satisfy Jf = 0 a.e., but on the other
hand it is not difficult to find a homeomorphism in BV such that Jf = 0
a.e. This has the form f(x1, x2 . . . , xn) = (ϕ(x1), x2, . . . , xn) where ϕ is a
one-dimensional example based on iteration of the standard Cantor-Vitali
one-third function.

We focus our attention to the statement of Conjecture A. Our Theorem 1.1
gives an affirmative solution of our problem in low dimension, particularly
in the “physically relevant” dimension n = 3, without any restriction.

Theorem 1.1. Let Ω ⊂ Rn be an open set and n ≤ 3. Suppose that f ∈
W 1,1

loc (Ω,Rn) is a sense preserving homeomorphism. Then Jf ≥ 0 a.e.

This is obvious in dimension n = 1 since each homeomorphism is either
increasing or decreasing function and therefore satisfies f ′ ≥ 0 a.e. or f ′ ≤ 0
a.e. Also in the planar case n = 2, the statement of Theorem 1.1 was known
and actually follows pretty easily from the result of Gehring and Lehto [4].
See also [1], Section 3.3., where the statement is also generalized to open and
discrete Sobolev mappings. To keep the presentation more self-contained
we will prove the two-dimensional version of Theorem 1.1 in Section 3. In
fact, we even show the result for any homeomorphism of bounded variation
f ∈ BV (Ω,R2).

The most interesting case n = 3 is realized in Section 5. It can be also
obtained as a particular case of our general n-dimensional result, but we
treat it separately to demonstrate the idea in the simplest form.

Before stating what we are able to prove in the general n-dimensional
case, we note that for the sake of sharpness we use the fine scale of Lorentz
spaces. For the definition of the space Lp,1(Ω) in consideration we refer to
the beginning of Section 6. Recall that

Lp(Ω) ⊂ Lp,1(Ω) ⊂
⋂
s>p

Ls(Ω).

As we state below, we are able to prove the desired property for mappings
with gradient in Lp,1 with p = [n/2], which means the integer part of n/2.
(This is, [n/2] = 1, 1, 2, 2, . . . for n = 2, 3, 4, 5, . . . .) Thus, within the crude
scale of ordinary Sobolev spaces, the result holds for W 1,s-mappings with
s > p.
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Theorem 1.2. Let Ω ⊂ Rn be an open set, n ≥ 2. Suppose that f : Ω→ Rn

is a sense preserving Sobolev homeomorphism with ∇f ∈ Lp,1, where p =
[n/2]. Then Jf ≥ 0 a.e.

Let us compare our results with previously known facts. The conjecture
was known for homeomorphisms in W 1,s, s > n − 1, (see [3, Lemma 5.10,
Theorem 5.21]) and [17] for a generalization to discontinuous functions).
Although the result has been supposed to be understood for s = n−1 [5], we
are not aware of any explicit statement in the literature. The argument for
s > n− 1 is based on Sobolev embedding theorem on spheres and therefore
it does not work for s < n− 1. To obtain the results in our setting we have
to include new ideas and techniques. The main new tool we use is the theory
of linking numbers and its topological invariance (see Section 4 for details).
Note that another application of linking spheres in Sobolev function theory
recently occured in [18].

2. Preliminaries

We define Bk(r) as the ball with center at 0 and radius r in Rk. The
sphere Sk−1(r) is the boundary of Bk(r). We omit to mark the parameter r
if r = 1. We denote by (e1, . . . , ek) the canonical basis of Rk, the dimension
k is to be deduced from the context.

It is known that functions in the Sobolev space f ∈W 1,1
loc are approxima-

tively differentiable almost everywhere and moreover that

(2.1) lim
r→0+

−
∫
B(x0,r)

∣∣∣f(x)− f(x0)−∇f(x0)(x− x0)
r

∣∣∣ dx = 0

for almost every x0. This follows easily from e.g. [2, 6.1.2, Theorem 2].

Topological degree. Given a smooth map f from Ω ⊂ Rn into Rn we can
define the topological degree as

deg(f,Ω, y0) =
∑

{x∈Ω:f(x)=y}

sgn(Jf (x))

if Jf (x) 6= 0 for each x ∈ f−1(y). This definition can be extended to
arbitrary continuous mappings and each point see e.g. [3].

A continuous mapping f : Ω→ Rn is called sense-preserving if

deg(f,Ω′, y0) > 0

for all domains Ω′ ⊂⊂ Ω and all y0 ∈ f(Ω′) \ f(∂Ω′). Similarly we call f
sense-reversing if deg(f,Ω′, y0) < 0 for all Ω′ and y0. Let us recall that each
homeomorphism on a domain is either sense-preserving or sense-reversing
see [13, II.2.4., Theorem 3].

We will use the fact that the topological degree is stable under homotopy.
That is for every continuous mapping H : Ω× [0, 1]→ Rn and p ∈ Rn such
that p /∈ H(∂Ω, t) for all t ∈ [0, 1] we have

deg(H(·, 0),Ω, p) = deg(H(·, 1),Ω, p).
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3. Planar case

Proof of Theorem 1.1 for n = 2. It is well-known fact that each W 1,1 func-
tion is absolutely continuous on almost all lines parallel to coordinate axes
(see e.g. [14, I.1.2]) and therefore it has classical partial derivatives almost
everywhere. By Gehring and Lehto Theorem [4] it follows that f is differ-
entiable almost everywhere.

Let us consider a point x0 ∈ Ω such that f is differentiable at x0 and
Jf (x0) 6= 0. Then α = inf‖y‖=1 |Df(x0)y| > 0 and we can choose r > 0
small enough such that

(3.1)
∣∣f(x0 + x)− f(x0)−Df(x0)x

∣∣ < rα for every x ∈ S1(r).

Let us consider a homotopy

H(x, t) = (1− t)
(
f(x0 + x)− f(x0)

)
+ tDf(x0)x for x ∈ B2(r).

By (3.1) we obtain that 0 /∈ H(Sn−1(r), t) for every t ∈ [0, 1] and thus

deg(f(x), x0 + B2(r), f(x0)) = deg(f(x0 + x)− f(x0),B2(r), 0) =

= deg(Df(x0)x,B2(r), 0) = sgnJf (x0).

�

Remark 3.1. It is known that any BV homeomorphism in the plane is
also differentiable almost everywhere (see e.g. [6]). Therefore, analogously
as above we obtain that any sense-preserving homeomorphism in BV (Ω,R2)
satisfies Jf ≥ 0 a.e. Here Jf denotes the determinant of the absolutely
continuous part of Df . We expect that the conjecture is true for any BV
homeomorphisms in arbitrary dimension.

4. Linking number

Let n, p, q be positive integers with p + q = n − 1. Let us consider the
mapping Φ(ξ, η) : Bp+1 × Bq+1 → Rn defined coordinatewise as Φ(ξ, η) = x,
where

x1 = (2 + η1)ξ1,

. . .

xp+1 = (2 + η1)ξp+1,

xp+2 = η2,

. . .

xp+q+1 = ηq+1.

Denote by A the anuloid

Φ(Sp × Bq+1) =
{
x ∈ Rn :

(√
x2

1 + . . .+ x2
p+1 − 2

)2 + x2
p+2 + . . .+ x2

n < 1
}
.

Of course given x ∈ A we can find a unique ξ ∈ Sp and η ∈ Bq+1 such that
Φ(ξ, η) = x. We will denote these as ξ(x) and η(x).

A link is a pair (ϕ,ψ) of parametrized surfaces ϕ : Sp → Rn, ψ : Sq → Rn.
The linking number of the link (ϕ,ψ) is defined as the topological degree

£(ϕ,ψ) = deg(L,A, 0),
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where the mapping L = Lϕ,ψ : A→ Rn is defined as

L(x) = ϕ(ξ(x))− ψ̄(−η(x)) or equivalently

L(Φ(ξ, η)) = ϕ(ξ)− ψ̄(−η), ξ ∈ Sp, η ∈ Bq+1,

where ψ̄ is an arbitrary continuous extension of ψ to Bq+1 (of course, the
degree does not depend on the way how we extend ψ, it depends only on
the values on the boundary ∂A = Φ(Sp × Sq)). Geometrically speaking,
for p = q = 1, the linking number is the number of loops of a curve ϕ
around a curve ψ counting orientation into account as +1 or −1. For the
introductions to the linking number in R3 and its application to the theory
of knots see [15].

The canonical link is the pair (µ, ν), where

(4.1)
µ(ξ) = Φ(ξ, 0), ξ ∈ Sp,
ν(η) = Φ(e1, η), η ∈ Sq.

For example in dimension n = 3 we get that

µ(S1) = {x ∈ R3 : x3 = 0, x2
1 + x2

2 = 4} and

ν(S1) = {x2 = 0, (x1 − 2)2 + x2
3 = 1}.

It is well known, however difficult to find, that the linking number is a
topological invariant. We will provide a simple proof for the case that we
just need, namely for mapping of the canonical link.

Proposition 4.1. Let n, p, q be positive integers with p + q = n − 1. Let
f : Bn(4)→ Rn be a homeomorphism. Then £(f ◦µ, f ◦ ν) is 1 if f is sense
preserving and −1 if f is sense reversing.

Proof. We consider a homotopy H(A× [0, 1])→ Rn defined as

H(Φ(ξ, η), t) = f
(
Φ(ξ, tη)

)
− f

(
Φ(e1, (t− 1)η)

)
, ξ ∈ Sp, η ∈ Bq+1.

We see that
H(Φ(ξ, η), 0) = (f ◦ µ)(ξ)− (f ◦ ν)(−η),

H(x, 1) = f(x)− f(2e1).
Since f is a homeomorphism, H(x, t) = 0 for x = Φ(ξ, η) with ξ ∈ Sp if and
only if ξ = e1 and η = 0. This however cannot occur if x ∈ ∂A. It follows
that £(f ◦µ, f ◦ ν) = deg(H(·, 0),A, 0) equals to the deg(f − f(2e1),A, 0) =
deg(f,A, f(2e1)) and proves the theorem. �

5. Three-dimensional case

Proof of Theorem 1.1 for n = 3. Denote B = B(0, 4). Let us consider a
point x0 ∈ Ω such that x0 is a Lebesgue point of the derivative of f , we have
(2.1) at x0 and Jf (x0) 6= 0. Let us consider a sequence {rk} of small radii,
rk ↘ 0. We may assume that B(x0, 3rk) ⊂ Ω. Next, let gk be the rescaled
functions

(5.1) gk(x) =
f(x0 + rkx)− f(x0)

rk
,

and g(x) = ∇f(x0)x. Then a simple change of variables shows that

(5.2) −
∫
B
|∇gk(x)−∇g(x)| dx = −

∫
B(x0,4rk)

|∇f(y)−∇f(x0)| dy k→∞→ 0,
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here we use that x0 is a Lebesgue point for ∇f . We have verified that
∇gk → ∇g in L1(B; R3×3). Similarly we observe that
(5.3)

−
∫
B
|gk(x)− g(x)| dx = −

∫
B(x0,4rk)

∣∣∣f(y)− f(x0)−∇f(x0)(y − x0)
rk

∣∣∣ dy k→∞→ 0

by (2.1) and therefore gk → g in L1(B; R3) and hence gk → g in W 1,1(B; R3).
By an appropriate selection of rk we can achieve that

∑
k ‖gk − g‖1,1 <∞.

Given η ∈ B2(1
3), we denote

ϕη(ξ) = Φ(ξ, η), ξ ∈ S1.

Similarly, given ξ ∈ B2(1
3), we denote

ψξ(η) = Φ(e1 + ξ, η), η ∈ S1.

We say that T = ϕη(S1) is a good circle for a function h ∈ W 1,1(B) ∩
C(B) if h|T ∈ W 1,1(T ) and the tangential derivatives of h|T coincide with
the corresponding directional derivatives of h a.e. with respect to the one-
dimensional measure on the circle. Let us recall that the restriction of W 1,1

function to almost every line parallel to coordinate axis is one-dimensional
W 1,1 function (see e.g. [14, Proposition 1.2]) and therefore analogously the
restriction to almost every circle is one-dimensional W 1,1 function.

Since Φ is a diffeomorphism,∑
k

‖gk ◦ Φ− g ◦ Φ‖W 1,1(S1×B2( 1
3

)) <∞.

By the Fubini theorem, for almost every η ∈ B2(1
3) we obtain that T =

ϕη(S1) is a good circle for all gk and moreover∑
k

∫
T

(|gk(x)− g(x)|+ |∇gk(x)−∇g(x)|) dx <∞,

in particular gk → g in W 1,1(T ). It is enough for us just to fix one such
a circle ϕη0 which we will denote by ϕ from now. Similarly, we find a
circle T ′ = ψ(S1) with ψ = ψξ0 such that gk → g in W 1,1(T ′). Using the
embedding of one-dimensional Sobolev spaces into the space of continuous
functions we infer that gk → g uniformly on T ∪T ′. Let us fix k. Since gk is
only a rescaling of f , gk is sense preserving and by Proposition 4.1 we have

£(gk ◦ µ, gk ◦ ν) = 1.

Through the homotopy

(5.4) H(ξ, η, t) = (gk ◦ Φ)(ξ, tη0)− (gk ◦ Φ)(e1 + tξ0,−η).

we obtain that

£(gk ◦ ϕ, gk ◦ ψ) = £(gk ◦ µ, gk ◦ ν) = 1

since H(ξ, η, t) 6= 0 for every ξ ∈ S1, η ∈ S1 and t ∈ [0, 1]. The last can be
easily seen from tη0 6= −η because gk ◦ Φ is a one-one mapping.

Now, by continuity of the degree, we pass to the limit and obtain

£(g ◦ µ, g ◦ ν) = £(g ◦ ϕ, g ◦ ψ) = 1.
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(The first equality is easily seen by a homotopic argument as above.) Using
Proposition 4.1 “backwards” we infer that g is sense preserving, so that
Jf (x0) > 0. �

6. The general case

For the treatment of the general case, we need to prepare some material
concerning the Lorentz spaces.

Lorentz spaces. If f : Ω → R is a measurable function, we define its
distribution function m(·, f) by

m(σ, f) = |{x : |f(x)| > σ}|, σ > 0,

and the nonincreasing rearrangement f? of f by

f?(t) = inf{σ : m(σ, f) ≤ t} .
The Lorentz space Lp,1(Ω) is defined as the class of all measurable functions
f : Ω→ R for which ∫ ∞

0
t

1
p
−1
f?(t) dt <∞ ,

see e.g. [16].
The role of this Lorentz space consists in the fact that the set of functions

such that |Df | ∈ Lp,1 is continuously embedded into the space of continuous
functions when p is the dimension of the domain.

Let φ be a bounded positive nonincreasing function on (0,+∞) such that

(6.1)
∫ ∞

0
φ(s)1/p ds <∞.

We denote

Fφ(s) =

{
sφ(s)

1
p
−1
, s > 0,

0, s = 0.
and notice that Fφ is continuous and nondecreasing at 0+. We denote by
Fp the class of all Orlicz functions of form Fφ with φ satisfying (6.1).

Proposition 6.1. Suppose that |Ω| < +∞. Let g ∈ Lp,1(Ω). Then there
exists F ∈ Fp such that ∫

Ω
F (g(x)) dx <∞.

Proof. See [9], Prop. 2.1. The boundedness of φ with F = Fφ is due to the
fact that the function φ is obtained as a slight modification of the distribution
function of g, so that supφ ≤ |Ω|. �

Proposition 6.2. Let F ∈ Fp. Let u ∈W 1,1(Sp) be a continuous function.
Then (

oscSp
u
)p
≤ C

∫
Sp
F (|∇u|) dx,

where C depends only on p and F . Here oscSp
u = diam(u(Sp)) as usual.

Proof. This follows immediately from the “flat version” in [9], Thm. 3.2. �
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Proof of Theorem 1.2. For n = 2, 3, the corresponding Lorentz space is just
L1 and this result is contained in Theorem 1.1. Also for n > 3, the proof is
analogous to the case n = 3 and therefore we only sketch it and point out the
differences. Recall that p = [n/2]. If n is even, we set q = p − 1, otherwise
q = p. We may assume that |Ω| < +∞. Since Lp,1 ⊂ Lq,1 on domains of
finite measure, by Proposition 6.1 there exist Fp ∈ Fp and Fq ∈ Fq such
that such that

∫
Ω F (|∇u|) <∞ with F = Fp + Fq.

Again we fix a point x0 such that Jf (x0) 6= 0, (2.1) holds for x0, and
such that x0 is a Lebesgue point for the functions f , ∇f and F (|∇f |). If we
define gk by (5.1), we observe similarly to (5.2) that

F (|∇gk|)→ F (|∇g|) in L1(B)

since x0 is a Lebesgue point of F (|∇f |). Using (5.2) and (5.3) we can choose
rk such that∑

k

‖gk − g‖1,1 <∞
∑
k

‖F (|∇gk|)− F (|∇g|)‖1 <∞.

Then the function

θ(x) = F (|∇g(x)|) +
∑
k

∣∣F (|∇gk(x)|)− F (|∇g(x)|)
∣∣, x ∈ B

is an integrable majorant to the sequence {F (|∇gk|)}. Given η ∈ Bp+1(1
3),

we denote
ϕη(ξ) = Φ(ξ, η), ξ ∈ Sp.

Similarly, given ξ ∈ Bq+1(1
3), we denote

ψξ(η) = Φ(e1 + ξ, η), η ∈ Sq.

We say that T = ϕη(Sp) is a good sphere for a function h ∈W 1,1(B)∩C(B) if
h|T ∈W 1,1(T ) and the derivatives of h|T coincide a.e. with the corresponding
directional derivatives of h.

Again using Fubini theorem we can fix η0 and ξ0 such that Tϕ := ϕη0(Sp)
and Tψ := ψξ0(Sq) are good spheres for each gk, that gk → g in W 1,1(Tϕ) and
W 1,1(Tψ) and F (|∇gk|) → F (|∇g|) in L1(Tϕ) and L1(Tψ) and θ ∈ L1(Tψ)
and L1(Tϕ). From monotonicity of F we infer that

F
(

1
2 |∇gk −∇g|

)
≤ F (|∇gk|) + F (|∇g|) ≤ 2θ.

Passing to a subsequence we obtain that ∇gk → ∇g a.e. on Tϕ and Tψ.
Since F is continuous at 0+, we obtain

F
(

1
2 |∇gk −∇g|

) k→∞→ 0 a.e. on Tϕ and Tψ.

Using the Lebesgue dominated convergence theorem we obtain∫
Tϕ

F
(

1
2 |∇gk −∇g|

)
dHp → 0,∫

Tψ

F
(

1
2 |∇gk −∇g|

)
dHq → 0.

The oscillation estimate from Proposition 6.2 implies that oscM (gk−g)→ 0,
where M = Tϕ ∪ Tψ. Since gk → g in L1(Tϕ) and L1(Tψ), it follows that
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gk → g uniformly on M . The same homotopy argument as in (5.4) gives us
that Jf (x0) > 0. �
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