A NOTE ON INTERSECTIONS OF SIMPLICIES

by D. A. Edwards, O. F. K. Kalenda and J. Spurný

Abstract. — We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.

Résumé (Sur certains intersections de simplexes). — Nous exposons une démonstration rectifiée de [1, Théorème 9], montrant ainsi que tout simplexe de Choquet métrisable et de dimension infinie se représente comme intersection d’une suite décroissante de simplexes de Bauer.

1. Introduction

If X is a compact convex subset of a locally convex space over the real numbers, it is called a Choquet simplex (briefly simplex) if the dual $(A(X))^*$ to the space $A(X)$ of all affine continuous functions is a lattice.
If, moreover, the set \(\text{ext} X \) of all extreme points of \(X \) is closed, \(X \) is termed a \textit{Bauer simplex} (see \cite{2} for more information on simplices).

The following theorem can be found as \cite[Théorème 9]{1}. By \((\ell^1, w^*)\) we mean \(\ell^1 \) with the topology \(\sigma(\ell^1, c_0) \).

Theorem 1.1. — \textit{Let \(X \) be a metrizable infinite-dimensional simplex. Then there exists a decreasing sequence \((T_n)_{n \in \mathbb{N}}\) of Bauer simplices in \((\ell^1, w^*)\) such that \(\bigcap_{n=1}^{\infty} T_n \) is affinely homeomorphic to \(X \).}

Unfortunately, the proof presented in \cite{1} is not entirely correct, since the inclusion

\[
S_{n+1} \cup F_{n+1} \subset \left(\text{conv}(S_n \cup \{e^{n+1}\}) \right) \cup F_{n+1}
\]

on page 237 of \cite{1} need not hold in general. The aim of our note is to indicate how to mend the proof of this theorem.

By \cite[Theorem 5.2]{3} (see also \cite[Theorem 3.22]{2}), for every metrizable infinite-dimensional simplex \(X \) there exists an inverse sequence \((X_n, \varphi_n)_{n \in \mathbb{N}}\) of \((n-1)\)-dimensional simplices such that \(X \) is affinely homeomorphic to its inverse limit \(\lim_{\leftarrow} X_n \). More precisely, every \(\varphi_n : X_{n+1} \to X_n \) is an affine continuous surjection and \(X \) is affinely homeomorphic to

\[
\{(x_n) \in \prod_{n=1}^{\infty} X_n : \varphi_n(x_{n+1}) = x_n, n \in \mathbb{N}\}.
\]

Inverse sequences \((X_n, \varphi_n)_{n \in \mathbb{N}}\) and \((Y_n, \psi_n)_{n \in \mathbb{N}}\) are called \textit{equivalent} if there exist affine homeomorphisms \(\omega_n : X_n \to Y_n \) such that \(\omega_n \circ \varphi_n = \psi_n \circ \omega_{n+1}, n \in \mathbb{N} \). Clearly, two equivalent inverse sequences have the same inverse limit up to an affine homeomorphism.

A description of a simplex by an inverse sequence yields a method of representing \(X \) by an infinite matrix \(A \) that is constructed inductively as follows.

In the first step, let \(X_1 = \{u_1^1\} \).

Assume now that \(n \in \mathbb{N} \) and \(\{u_1^n, \ldots, u_n^n\} \) is the enumeration of vertices of \(X_n \) chosen in the \(n \)-th step. We choose vertices \(\{u_1^{n+1}, \ldots, u_n^{n+1}\} \) of \(X_{n+1} \) such that \(\varphi_n(u_i^{n+1}) = u_i^n, i = 1, \ldots, n \). If \(u_{n+1}^{n+1} \in X_{n+1} \) is the remaining vertex, let \(a_{1,n}, \ldots, a_{n,n} \) be positive numbers with \(\sum_{i=1}^{n} a_{i,n} = 1 \) such that

\[
\varphi_n(u_{n+1}^{n+1}) = \sum_{i=1}^{n} a_{i,n} u_i^n.
\]
Then

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\ 0 & a_{2,2} & a_{2,3} & \cdots \\ 0 & 0 & a_{3,3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

is the representing matrix of X. It is not difficult to see that A is uniquely determined by the inverse sequence $(X_n, \varphi_n)_{n \in \mathbb{N}}$.

Conversely, any such matrix describes a unique inverse sequence of simplices and thus codes a unique metrizable simplex. We refer the reader to [2], [3], [4] and [5] for detailed information on representing matrices.

We need the following observation based upon [4, Theorem 4.7].

Proposition 1.2. — Let A be a representing matrix for a simplex X. Then there exists a matrix $B = \{b_{i,n}\}_{1 \leq i \leq n}^{n=1,2,\ldots}$ representing X such that $b_{i,n} > 0$ for all $1 \leq i \leq n$ and $n = 1, 2, \ldots$.

Proof. — It follows from [4, Theorem 4.7] that two matrices A and B represent the same simplex if $\sum_{n=1}^{\infty} \sum_{i=1}^{n} |a_{i,n} - b_{i,n}| < \infty$. Thus it is enough to slightly perturb coefficients of A to get the required matrix B.

\[\square \]

2. Proof of Theorem 1.1

We recall some notation from [1]. Let $e^n, n \in \mathbb{N}$, denote the standard basis vectors in ℓ^1 and let $e^0 = 0$. For $n \in \mathbb{N}$, let $E_n = \text{conv}\{e^0, \ldots, e^{n-1}\}$, and let $P_n : \ell^1 \to \ell^1$ be the natural projection on the space spanned by vectors e^0, \ldots, e^{n-1}, precisely

$$P_n : (x_1, x_2, \ldots) \mapsto (x_1, \ldots, x_{n-1}, 0, 0, \ldots), \quad (x_1, x_2, \ldots) \in \ell^1.$$

In particular, P_1 maps ℓ^1 onto e^0.

We state an easy observation needed in the proof of Proposition 2.2.

Lemma 2.1. — Let X be a finite dimensional simplex in a vector space E containing 0 and x be a vector not contained in the linear span of X. Then for any y in the relative interior of X there exists $\varepsilon > 0$ such that $y + \varepsilon x \in \text{conv}(X \cup \{x\})$.

Proof. — If y is in the relative interior of X and $0 \in X$, there exists $\varepsilon \in (0,1)$ such that $(1-\varepsilon)^{-1}y \in X$. Then

$$y + \varepsilon x = (1-\varepsilon)\frac{y}{1-\varepsilon} + \varepsilon x \in \text{conv}(X \cup \{x\}),$$

which finishes the proof.

Now we start with the proof of Theorem 1.1. Given a metrizable simplex X, Proposition 1.2 provides an inverse sequence $(X_n, \varphi_n)_{n \in \mathbb{N}}$ such that X is its inverse limit and the associated representing matrix A has all entries $a_{i,n} > 0$ for all $n \in \mathbb{N}$ and $1 \leq i \leq n$.

PROPOSITION 2.2. — Let X be a metrizable infinite-dimensional simplex with a representing matrix A such that $a_{i,n} > 0$ for all $n \in \mathbb{N}$ and $1 \leq i \leq n$. Let $(X_n, \varphi_n)_{n \in \mathbb{N}}$ be the inverse sequence associated with A.

Then there exist $(n-1)$-dimensional simplices $S_n \subset \ell^1$, $n \in \mathbb{N}$, such that

(i) $S_n \subset E_n$, $n \in \mathbb{N}$,
(ii) S_n is a face of S_m, $n < m$,
(iii) $P_nS_m = S_n$, $n < m$,
(iv) $S_{n+1} \subset \text{conv}(S_n \cup \{e^n\})$, $n \in \mathbb{N}$,
(v) the inverse sequences $(X_n, \varphi_n)_{n \in \mathbb{N}}$ and $(S_n, P_n)_{n \in \mathbb{N}}$ are equivalent.

Proof. — We construct inductively simplices S_n together with mappings $\omega_n : X_n \to S_n$, $n \in \mathbb{N}$, observing that the resulting inverse sequence is equivalent to the original one.

We start the construction by setting $S_1 = E_1 = \{e^0\}$ and $S_2 = E_2 = \text{conv}\{e^0, e^1\}$. Let $\omega_1 : X_1 \to S_1$ and $\omega_2 : X_2 \to S_2$ be the obvious affine homeomorphisms.

We assume that the construction has been completed up to the n-th stage. If $\omega_n : X_n \to S_n$ is the affine homeomorphism guaranteed by the inductive assumption and $\{u_{1,n}, \ldots, u_{n,n}\}$ are the vertices of X_n, $\{\omega_n(u_{1,n}), \ldots, \omega_n(u_{n,n})\}$ are the vertices of S_n.

Let $\{u_{1,1}, \ldots, u_{n,1}\}$ be the vertices of X_{n+1} that are mapped by φ_n onto the vertices $\{u_{1,n}, \ldots, u_{n,n}\}$ of X_n and let $u_{n+1,n}$ be the remaining vertex mapped onto the point $\sum_{i=1}^{n} a_{i,n} u_{i,n}$. Since all numbers $a_{1,n}, \ldots, a_{n,n}$ are strictly positive, the point

$$\omega_n(\varphi_n(u_{n+1,n})) = \sum_{i=1}^{n} a_{i,n} \omega_n(u_{i,n})$$
is contained in the relative interior of S_n. By Lemma 2.1, there exists $\varepsilon > 0$ such that
\begin{equation}
\omega_n(\varphi_n(u_{n+1}^n)) + \varepsilon e^n \in \text{conv}(S_n \cup \{e^n\}).
\end{equation}
By defining
\begin{equation}
S_{n+1} = \text{conv}(S_n \cup \{\omega_n(\varphi_n(u_{n+1}^n)) + \varepsilon e^n\})
\end{equation}
we get an n–simplex with vertices
\[\{\omega_n(u_1^n), \ldots, \omega_n(u_n^n), \omega_n(\varphi_n(u_{n+1}^n)) + \varepsilon e^n\}.
\]
We define $\omega_{n+1} : X_{n+1} \to S_{n+1}$ by conditions
\[\omega_{n+1}(u_i^{n+1}) = \omega_n(\varphi_n(u_i^{n+1})), \quad i = 1, \ldots, n,
\]
\[\omega_{n+1}(u_{n+1}^{n+1}) = \omega_n(\varphi_n(u_{n+1}^{n+1})) + \varepsilon e^n.
\]
By (2) and (3) and the inductive assumption,
\[S_{n+1} \subset \text{conv}(S_n \cup \{e^n\}) \subset E_{n+1}.
\]
Further, S_n is a face of S_{n+1}, $P_nS_{n+1} = S_n$ and $\omega_n \circ \varphi_n = P_n \circ \omega_{n+1}$.
Thus conditions (i)–(iv) are satisfied and the mappings ω_n, $n \in \mathbb{N}$, show that the sequences (X_n, φ_n) and (S_n, P_n) are equivalent. This finishes the proof.

The rest of the proof Theorem 1.1 can proceed as in [1]. To clarify what is going on, we give two more propositions. The proof of Theorem 1.1 follows immediately from them.

Proposition 2.3. — Let S_n, $n \in \mathbb{N}$, be weak* compact convex subsets of ℓ^1 satisfying conditions (i), (ii') and (iii), where (i) and (iii) are conditions from Proposition 2.2 and (ii') $S_n \subset S_m$ for $n \leq m$.

Then the inverse limit of the inverse sequence $(S_n, P_n)_{n \in \mathbb{N}}$ is affinely homeomorphic to the closure of $\bigcup_{n=1}^{\infty} S_n$ in the weak* topology.

Proof. — Let Y denote the weak*–closure of $\bigcup_{n=1}^{\infty} S_n$, and let X be the inverse limit $\lim_{\leftarrow} S_n$ represented in the form given by the formula (1). An affine homeomorphism $\varphi : Y \to X$ can be defined by the equation
\[\varphi(y) = (P_n(y))_{n \in \mathbb{N}}, \quad y \in Y.
\]
To see that φ is well defined, note that by (ii') and (iii) we have $P_n(y) \in S_n$ whenever $y \in \bigcup_{n=1}^{\infty} S_n$, and hence, by the weak*–continuity of $P_n : \ell^1 \to \ell^1$, that $P_n(y) \in S_n$ for all $y \in Y$. Moreover, φ is clearly
affine, continuous and one-to-one. To see that \(\varphi \) is onto, choose any \(x = (x_n)_{n \in \mathbb{N}} \in X \). Let \(y \in \mathbb{R}^N \) have as \(n \)-th coordinate \(y_n \) the \(n \)-th coordinate of the vector \(x_{n+1} \). Then \((y_1, \ldots, y_n, 0 \ldots) \in S_n \) for each \(n \in \mathbb{N} \), therefore \(y \in \ell_1 \) by (i), and so \(y \in Y \). Moreover, clearly \(\varphi(y) = x \). This completes the proof.

Proposition 2.4. — Let \((S_n)_{n \in \mathbb{N}} \) be a sequence of simplices in \(\ell^1 \) satisfying conditions (i)–(iv) of Proposition 2.2. Set

\[
F_n = \overline{\text{conv}} \{e_0, e_n, e_{n+1}, \ldots\}, \quad n \in \mathbb{N},
\]

where the bar denotes norm-closure, and

\[
T_n = \text{conv}(S_n \cup F_n), \quad n \in \mathbb{N}.
\]

Then \((T_n)_{n \in \mathbb{N}} \) is a decreasing sequence of Bauer simplices in \((\ell^1, w^*) \) whose intersection is the weak*-closure of \(\bigcup_{n=1}^\infty S_n \).

Proof. — It is clear that both \(F_n \) and \(S_n \) are Bauer simplices in \((\ell^1, w^*) \). Thus \(T_n \) is a Bauer simplex in \((\ell^1, w^*) \) as well. Moreover,

\[
S_{n+1} \cup F_{n+1} \subset \text{conv}(S_n \cup \{e_n\}) \cup F_{n+1}
\subset \text{conv}(S_n \cup F_n),
\]

and hence \(T_{n+1} \subset T_n \) for \(n \in \mathbb{N} \).

It remains to prove the final equality. Set \(T = \bigcap_{n=1}^\infty T_n \) and denote by \(Y \) the weak*-closure of \(\bigcup_{n=1}^\infty S_n \). Let \(n \in \mathbb{N} \) be arbitrary. Then for each \(m \geq n \) we have \(S_n \subset S_m \subset T_m \). Thus \(S_n \subset T \). It follows that \(Y \subset T \).

To see the converse inclusion, take any \(x \in T \). For each \(n \in \mathbb{N} \) we have \(x \in T_n, 0 \in S_n \), and hence \(P_n(x) \in S_n \). But the sequence \((P_n(x))_{n \in \mathbb{N}} \) is weak*-convergent to \(x \), so \(x \in Y \).

Finally, Theorem 1.1 follows immediately by combining Propositions 1.2, 2.2, 2.3 and 2.4.

Remark 2.5. — We note that it is not essential that we work in the space \((\ell^1, w^*) \). The norm structure of this space is used only in the definition of \(F_n \), and can be replaced there by weak*-closure. So, it would be possible (and, perhaps, more natural) to work in the locally convex space \(\mathbb{R}^N \) equipped with the pointwise topology. Anyway, we decided to keep the setting from [1].
BIBLIOGRAPHY

