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Abstract

We find an optimal Sobolev-type space on Rn all of whose functions admit a trace on
subspaces of Rn of given dimension. A corresponding trace embedding theorem with sharp
range is established.

1 Introduction and results

One important property enjoyed by functions from the Sobolev space Wm,p(Rn), m ∈ N,
p ∈ [1,∞], is that their restrictions, called traces, to lower dimensional spaces can be properly
defined, provided that the dimension d of the relevant subspaces is not too small, depending
on n, m and p. The trace of a function u ∈ Wm,p(Rn) turns out to be measurable with
respect to the d-dimensional measure on the relevant subspaces, and also integrable to some
power q, depending on n, m, p and d. Loosely speaking, increasing the values of m and p
causes u to be more regular, and hence allows smaller values of d and larger values of q.

To be more specific, let n, d ∈ N, and let n ≥ 2 and 1 ≤ d < n. Since Rn = Rd × Rn−d,
any point x ∈ Rn can be represented as x = (y, z), with y ∈ Rd and z ∈ Rn−d. Moreover,
Rd can be identified with the subspace of those points in Rn having the form (y, 0) for some
y ∈ Rd. Given any m ∈ N and p ∈ [1,∞], the classical Sobolev space Wm,p(Rn) is defined as

Wm,p(Rn) = {u : u is an m-times weakly differentiable function on Rn

and |∇ku| ∈ Lp(Rn), 0 ≤ k ≤ m} .
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Agency of the Czech Republic and by the Nečas Center for Mathematical Modeling project no. LC06052 financed
by the Czech Ministry of Education.

1



2

Here, ∇ku stands for the vector of all partial derivatives of u of order k, and |∇ku| denotes
its length. The space Wm,p

loc (Rn) is defined with obvious modifications.
Various approaches to traces of functions are available in the literature. We shall adopt the

following definition, which extends more customary notions of traces of functions in Sobolev
spaces – see [Bu, Chapt. 5]. A function u ∈ L1

loc(R
n) is said to have a trace Tru ∈ L1

loc(R
d)

on Rd if there exists a function u, equivalent to u on Rn, such that

lim
z→0

u(·, z) = Tru(·) in L1
loc(R

d) .

A standard trace embedding theorem (see e.g. [Ad, Theorem 5.4] or [Ma2, Corollary
1.4.1]), combined with [Bu, Cor. 1, Chapt. 5], tells us that if 1 ≤ m < n and either

(1.1) d ≥ n−m and p ≥ 1,

or

(1.2) d < n−m and p >
n− d

m
,

then every function u ∈ Wm,p
loc (Rn) has a trace on Rd. Moreover, the operator Tr, which

associates Tru with u, is linear, and, if p < n
m , then

(1.3) Tr : Wm,p(Rn) → L
dp

n−mp (Rd) ,

where the arrow “→” stands for bounded operator. In particular,

(1.4) ‖Tr u‖
L

dp
n−mp (Rd)

≤ C‖∇mu‖Lp(Rn)

for every u ∈Wm,p(Rn). Note that the case when m ≥ n is uninteresting, since any function
u ∈ Wm,p

loc (Rn), p ≥ 1, is continuous, and hence Tr u trivially exists on Rd for every d ∈
[1, n− 1].

Unlike (1.1), in the limiting case when p = n−d
m > 1, functions from the Sobolev space

W
m, n−d

m

loc (Rn) need not admit a trace on Rd.
The aim of this note is to fill in this gap and to exhibit an optimal (largest possible)

Sobolev-type space when d < n−m such that all of its functions admit a trace on Rd. This
is accomplished on calling into play the finer scale of Lorentz-Sobolev spaces. Indeed, we shall

show that existence of traces can be restored when p = n−d
m , provided that W

m, n−d
m

loc (Rn) is

replaced by the Sobolev type spaceWm
locL

n−d
m ,1(Rn) built upon the Lorentz space L

n−d
m ,1(Rn).

Such a space is slightly smaller than W
m, n−d

m

loc (Rn) if n−d
m > 1, but agrees with the standard

space Wm,1
loc (Rn) when n−d

m = 1. Moreover, L
n−d

m ,1

loc (Rn) is optimal among all rearrangement-
invariant spaces.

We recall that a rearrangement-invariant (r.i. for short) space X(Rn) is a Banach function
space (in the sense of Luxemburg) of real-valued measurable functions in Rn endowed with
a norm ‖ · ‖X(Rn) satisfying

(1.5) ‖u‖X(Rn) = ‖v‖X(Rn) if u∗ = v∗.

Here, u∗ : (0,∞) → (0,∞) denotes the decreasing rearrangement of u, namely

u∗(s) = sup {t ≥ 0 :?Ln({x ∈ Rn : |u(x)| > t}) > s} for ?s ∈ (0,∞),

where Ln denotes the Lebesgue measure in Rn. The representation space X(0,∞) of an r.i.
space X(Rn) is the r.i. space on (0,∞) equipped with the norm ‖ · ‖X(0,∞) fulfilling

(1.6) ‖u‖X(Rn) = ‖u∗‖X(0,∞)
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for every u ∈ X(Rn).
The m-th order Sobolev space associated with X(Rn) is defined as

WmX(Rn) = {u : u is an m-times weakly differentiable function on Rn

and |∇ku| ∈ X(Rn), 0 ≤ k ≤ m} ,

and is equipped with the norm ‖u‖W mX(Rn) =
∑m

k=0 ‖∇
ku‖X(Rn). The spaces Xloc(R

n) and
Wm

locX(Rn) are defined accordingly.
Given any 1 < p < ∞ and 1 ≤ q ≤ ∞, the Lorentz space Lp,q(Rn) is the r.i. space of all

measurable functions in Rn for which the quantity

(1.7) ‖u‖Lp,q(Rn) = ‖s
1
p− 1

q u∗(s)‖Lq(0,∞)

is finite. The functional ‖ · ‖Lp,q(Rn) is always equivalent to an r.i. norm.
Observe that, since Lp,q(Rn) ( Lp,r(Rn) if 1 ≤ q < r ≤ ∞, and Lp,p(Rn) = Lp(Rn), actually

(1.8) WmL
n−d

m ,1(Rn) ( Wm, n−d
m (Rn) if n−d

m > 1 ,

whereas

(1.9) WmL1,1(Rn) = Wm,1(Rn) .

Relations (1.8) and (1.9) continue to hold if all the Sobolev spaces are replaced by their local
versions.

Theorem 1.1 Assume that n ≥ 2, 1 ≤ m < n and 1 ≤ d ≤ n − m. Then any function

from Wm
locL

n−d
m ,1(Rn) admits a trace on Rd. Moreover, L

n−d
m ,1

loc (Rn) is the optimal (largest)
rearrangement-invariant space enjoying this property, in the sense that if X(Rn) is another
r.i. space such that any function from Wm

locX(Rn) admits a trace on Rd, then, necessarily,

Xloc(R
n) ⊂ L

n−d
m ,1

loc (Rn).

In an analogy with the classical situation described in (1.3)–(1.4), we establish a trace

embedding forWmL
n−d

m ,1(Rn). In fact, we find the optimal (smallest) range space in the class

of Lorentz spaces for trace embeddings of WmL
n−d

m ,1(Rn). Interestingly enough, the optimal
range space in this endpoint trace embedding turns out not to be the genuine Lorentz space

L
n−d

m ,1(Rd) as one would expect in the light of other known optimal Sobolev embeddings
such as those treated in [On1, Pe, BW, Ha] (see [CP, EKP] for the optimality), and trace

embeddings ([CKP]), but merely the (strictly larger) Lebesgue space L
n−d

m (Rd).

Theorem 1.2 Assume that n ≥ 2, 1 ≤ m < n and 1 ≤ d ≤ n−m. Then

(1.10) Tr : WmL
n−d

m ,1(Rn) → L
n−d

m (Rd).

In particular, a constant C = C(n,m, d) exists such that

(1.11) ‖Tr u‖
L

n−d
m (Rd)

≤ C‖∇mu‖
L

n−d
m

,1(Rn)

for every u ∈WmL
n−d

m ,1(Rn). Moreover, L
n−d

m (Rd) is optimal on the left-hand side of (1.11)
among all Lorentz spaces.

Let us mention that a result on a related topic has recently been established in [CM],
where a characterization of Sobolev inequalities involving general measures and Lorentz
norms is given in terms of capacitary inequalities.

Remark 1.3 Embedding (1.10) continues to hold provided that the whole of Rn is replaced
by any extension domain Ω (see e.g. [Ad, Bu, St1, Zi] for a definition). Of course, Rd has to
be replaced by Ω ∩ Rd in this case.
Another generalization of embedding (1.10) concerns the case when traces on d-dimensional
subspaces are replaced by (suitably defined – see e.g. [Bu]) traces on smooth d-dimensional
Riemannian submanifolds of Rn.
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2 Proofs

We begin with the proof of Theorem 1.2, to which the first part of the proof of Theorem 1.1
will be reduced. The proof of Theorem 1.2 involves two main ingredients: a sharp endpoint
Sobolev inequality into the space of essentially bounded functions, and a boundedness result
for integral product operators between Lorentz spaces.

The relevant Sobolev inequality is a refinement of a classical result and involves a Lorentz-
Sobolev space. It states that, if 1 ≤ m < n, then a constant C = C(n,m) exists such that

(2.1) ‖u‖L∞(Rn) ≤ C‖∇mu‖
L

n
m

,1(Rn)

for every u ∈WmL
n
m ,1(Rn). We are not able to trace back to the original proof of inequality

(2.1), although it is certainly related to a result of [St2]. Anyway, inequality (2.1) with m = 1
can be found in [Ta] and [CP]. The case when m > 1 can be derived from this one, via a
(sub-limiting) Sobolev inequality in Lorentz spaces, which tells us that

‖∇u‖Ln,1(Rn) ≤ C‖∇mu‖
L

n
m

,1(Rn)

for every u ∈WmL
n
m ,1(Rn) ([On1, Pe]).

The integral operators coming into play in our approach have the form

h(y) =

∫ ∞

0

f(y, s)g(s)ds

for measurable functions f : Rd × (0,∞) → R and g : (0,∞) → R. A special case of [On2,
Theorem C] ensures that if p ∈ (1,∞), f ∈ Lp,1(Rd × (0,∞)) and g ∈ Lp′,∞(0,∞), then
h ∈ Lp(Rd), and a constant C = C(p) exists such that

(2.2) ‖h‖Lp(Rd) ≤ C‖f‖Lp,1(Rd×(0,∞))‖g‖Lp′,∞(0,∞).

Proof of Theorem 1.2 We shall prove that a constant C exists such that

(2.3) ‖u(y, 0)‖
L

n−d
m (Rd)

≤ C‖∇mu‖
L

n−d
m

,1(Rn)

for every u ∈ WmL
n−d

m ,1(Rn) ∩ C∞
0 (Rn). Since this space is dense in WmL

n−d
m ,1(Rn), as

shown by a standard convolution argument, it will follow via [Bu, Cor. 1, Chapt. 5] that the

operator Tr is well defined in WmL
n−d

m ,1(Rn) and that (1.10)–(1.11) hold.
Fix any u as above. Then,

(2.4) |∇mu| ∈ L
n−d

m ,1(Rn) .

Consider the function U : Rd × (0,∞) → [0,∞) given by

U(y, s) = |∇mu|(y, ·)∗(s) for (y, s) ∈ Rd × (0,∞).

It is easily seen, as a consequence of Fubini’s theorem, that

Ld+1({(y, s) ∈ Rd × (0,∞) : U(y, s) > t}) = Ln({x ∈ Rn : |∇mu(x)| > t}) for t > 0.

Hence,

(2.5) U∗ = |∇mu|∗ .

By (2.4) and (2.5),

(2.6) U ∈ L
n−d

m ,1(Rd × (0,∞)) .
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Inequality (2.1), with n− d in place of n, entails that

(2.7) ‖w‖L∞(Rn−d) ≤ C‖∇mw‖
L

n−d
m

,1(Rn−d)

for some constant C = C(n,m, d) and for every w ∈WmL
n−d

m ,1(Rn−d). From (2.7), applied
to w( · ) = u(y, · ) for each y ∈ Rd, we deduce that,

|u(y, 0)| ≤ ‖u(y, ·)‖L∞(Rn−d) ≤ C‖∇m
z u(y, ·)‖L

n−d
m

,1(Rn−d)
(2.8)

≤ C‖∇mu(y, ·)‖
L

n−d
m

,1(Rn−d)
= C

∫ ∞

0

U(y, s)s
m

n−d−1ds .

Here, ∇m
z u denotes the vector of all the derivatives of u of order m with respect to the z

variables. The function s
m

n−d−1 belongs to L
n−d

n−d−m ,∞(0,∞), and ‖s
m

n−d−1‖
L

n−d
n−d−m

,∞
(0,∞)

=

1. Thus, owing to (2.2) and (2.5), there exists a constant C = C(n,m, d) such that
∥∥∥∥
∫ ∞

0

U(·, s)s
m

n−d−1ds

∥∥∥∥
L

n−d
m (Rd)

≤ C‖U‖
L

n−d
m

,1(Rd×(0,∞))
‖s

m
n−d−1‖

L
n−d

n−d−m
,∞

(0,∞)
(2.9)

= C‖∇mu‖
L

n−d
m

,1(Rn)
.

Coupling (2.8) and (2.9) yields (2.3).

In order to demonstrate the sharpness of L
n−d

m (Rd) as a range space, we begin by ob-
serving that an inequality of the form

‖Tr u‖Lp,q(Rd) ≤ C‖∇mu‖
L

n−d
m

,1(Rn)

can hold for some p and q only if p = n−d
m . This follows by a scaling argument, on replacing

u(x) by u(λx) for λ > 0.

Thus, it suffices to exhibit a function u ∈ WmL
n−d

m ,1(Rn) such that, whenever q ∈ [1, n−d
m ),

we have that Tru /∈ L
n−d

m ,q(Rd). We shall produce, in fact, a compactly supported function

u ∈ WmL
n−d

m ,1(Rn) such that Tru /∈ L
n−d

m ,q

loc (Rd) for q ∈ [1, n−d
m ). Pick any number α such

that

(2.10) 1 +
m

n− d
< α ≤ 1 +

1

q
.

Let ϕ : (0, 1) × (0, 1) → [0,∞) be the function given by

ϕ(r, ̺) =
1

rn(m−1)+ dm
n−d ̺

(
log e

r̺

)α for r, ̺ ∈ (0, 1) × (0, 1).

Define u : Rn → [0,∞) as

(2.11) u(y, z) =

∫ |y|n

|z|n−d

ϕ(|y|, ̺)(|y|n − ̺)m−1 dt if |z|n−d ≤ |y|n < 1,

and u(y, z) = 0 otherwise. We begin by showing that, given any q ∈ [1, n−d
m ),

(2.12) Tr u /∈ L
n−d

m ,q

loc (Rd).

One has that

Tr u(y) = u(y, 0) =

∫ |y|n

0

ϕ(|y|, ̺)(|y|n − ̺)m−1 d̺(2.13)

≥
1

2m−1

∫ |y|n

2

0

ϕ(|y|, ̺)|y|n(m−1) d̺ = C|y|−
dm

n−d

(
log

e

|y|1+n

)1−α
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for some constant C, if |y| ≤ 1, and Tr u(y) = 0 otherwise. Thus, there exists a constant C
such that

(Tru)∗(s) ≥ Cs−
m

n−d

(
log

e

s

)1−α

for small s,

and (2.12) follows by the second inequality in (2.10).

We conclude by proving that u ∈ WmL
n−d

m ,1(Rn). It is easily verified that u is m-times
weakly differentiable. Thus, since u is compactly supported, thanks to a general Poincaré-
type inequality (see e.g. [CP, Lemma 4.2]), it suffices to show that

(2.14) |∇mu| ∈ L
n−d

m ,1(Rn) .

An induction argument on the order of differentiation yields the following estimate for the
norm of the vector ∇m

y u of all partial derivatives of u, of order m, with respect to the
y-variables only:

(2.15)
∣∣∇m

y u
∣∣ ≤ C|y|−

nm
n−d

(
log

C

|y|

)1−α

,

for some constant C, if |z|n−d ≤ |y|n < 1, whereas ∇m
y u vanishes otherwise. Thus, on defining

ζ : (0, 1] → [0,∞) as

ζ(s) = Cs−
m

n−d

(
log

C

s

)1−α

for s ∈ (0, 1],

with a suitable choice of C, one has that ζ is decreasing in (0, 1], and, for every t > 0,

Ln
(
{(y, z) ∈ Rn : |∇m

y u| > t}
)
≤ Ln

(
{(y, z) ∈ Rn : |z|n−d ≤ |y|n < 1, ζ(|y|n) > t}

)

≤

∫

{|y|≤(ζ−1(t))1/n}

(∫

{|z|≤|y|n/(n−d)}

dz

)
dy

= C ′

∫

{|y|≤(ζ−1(t))1/n}

|y|ndy = C ′′
(
ζ−1(t)

) d
n +1

for some constants C ′ and C ′′. Hence, there exists a constant C such that

(2.16)
∣∣∇m

y u
∣∣∗ (s) ≤ Cs−

nm
(n+d)(n−d)

(
log

C

s

)1−α

for small s .

Next, an induction argument again shows that the norm of the vector ∇m
y,zu of all m-th order

partial derivatives of u involving also differentiation along the z variables admits the bound:

(2.17)
∣∣∇m

y,zu
∣∣ ≤ C|y|−

dm
n−d |z|−m

(
log

C

|y||z|

)−α

,

for some constant C, if |z|n−d ≤ |y|n < 1, and vanishes otherwise. Hence, if we define
σ : (0, 1] → [0,∞) as

σ(s) = Cs−
m

n−d

(
log

C

s

)−α

for s ∈ (0, 1],
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then, for a suitable choice of C, the function σ is decreasing in (0, 1], and, for every t > 0,

Ln
(
{(y, z) ∈ Rn : |∇m

y,zu| > t}
)
≤ Ln

(
{(y, z) ∈ Rn : |z|n−d ≤ |y|n < 1, σ(|y|d|z|n−d) > t}

)

≤ Ln

({
(y, z) ∈ Rn : |y| ≤ 1, |z| ≤ 1, |z| <

(σ−1(t)

|y|d

)1/(n−d)
})

=

∫

{(σ−1(t))1/d≤|y|≤1}

(∫

{|z|≤(
σ−1(t)

|y|d
)1/(n−d)}

dz

)
dy

+

∫

{|y|<(σ−1(t))1/d}

(∫

{|z|≤1}

dz

)
dy

= C ′

(∫
{

(σ−1(t))1/d≤|y|≤1
}
σ−1(t)

|y|d
dy +

∫
{
|y|<(σ−1(t))1/d

} dy
)

≤ C ′′
(
σ−1(t) log

( 1

σ−1(t)

)
+ σ−1(t)

)
,

for some constants C ′ and C ′′. Hence, there exists a constant C such that

(2.18)
∣∣∇m

y,zu
∣∣∗ (s) ≤ Cs−

m
n−d

(
log

e

s

) m
n−d−α

for small s .

From (2.16) and (2.18) one deduces that

|∇mu|∗ (s) ≤ Cs−
m

n−d

(
log

e

s

) m
n−d−α

for small s ,

whence (2.14) follows.

We conclude with the proof of Theorem 1.1.

Proof of Theorem 1.1 Let u ∈ Wm
locL

n−d
m ,1(Rn). Then, given any ball B centered on

Rd, we have that u ∈ WmL
n−d

m ,1(B). An extension theorem for Sobolev spaces built upon
arbitrary r.i. spaces (see [CR]) ensures that u admits an extension ũ on Rn such that

ũ ∈ WmL
n−d

m ,1(Rn). By Theorem 1.2, ũ admits a trace on Rd, and hence, owing to the
arbitrariness of B, u admits a trace on Rd as well.

As far as the optimality of the space Wm
locL

n−d
m ,1(Rn) is concerned, assume that X(Rn) is

an r.i. space such that every function from Wm
locX(Rn) has a trace on Rd. We have to show

that

(2.19) Xloc(R
n) ⊂ L

n−d
m ,1

loc (Rn).

If n−d
m = 1, then L

n−d
m ,1

loc (Rn) = L1
loc(R

n), and hence (2.19) holds as a consequence of a baisc
property of r.i. spaces.
Assume now that n−d

m > 1. We shall show that, if

(2.20) Xloc(R
n) \ L

n−d
m ,1

loc (Rn) 6= ∅ ,

then there exists a function

(2.21) u ∈Wm
locX(Rn)

such that, for every v ∈ L1
loc(R

d),

(2.22) lim
z→0

‖u(·, z) − v(·)‖L1(Bd) = ∞ .
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Here, Bd denotes the unit ball in Rd centered at 0. By (2.20), there exists a decreasing
function f : (0,∞) → [0,∞) such that

(2.23) fχ(0,ωn−d) ∈ X(0,∞),

but

(2.24) fχ(0,ωn−d) /∈ L
n−d

m ,1(0,∞) .

Here, ωn−d denotes the measure of Bn−d. Define w : Bn−d → [0,∞) as

w(z) =

∫ ωn−d

ωn−d|z|n−d

f(s)s−m(1− 1
n−d )

(
s− ωn−d|z|

n−d
)m−1

ds,

and u : Rn → [0,∞) as

u(y, z) = ξ(y)η(z)w(z) for (y, z) ∈ Rn,

where ξ ∈ C∞
0 (Rd), 0 ≤ ξ ≤ 1, ξ(y) = 1 for y ∈ Bd, and η ∈ C∞

0 (Rn−d), 0 ≤ η ≤ 1, η(z) = 1
for z ∈ Bn−d. By (2.24),

lim
z→0

w(z) = ∞ ,

and hence
lim
z→0

u(y, z) = ∞

uniformly as y ∈ Bd. Thus, (2.22) follows.
We next prove (2.21). One can easily verify that

(2.25) |∇mu(y, z)| ≤ φ(y)ψ(z)|∇m
z w(z)| for (y, z) ∈ Rn,

for some nonnegative functions φ ∈ C∞
0 (Rd) and ψ ∈ C∞

0 (Rn−d). Define g : (0,∞) → [0,∞)
as

(2.26) g(s) =
m−1∑

i=1

si− m
n−d

∫ ∞

s

χ(0,ωn−d)(r)f(r)r−i+ m
n−d−1 dr for s > 0,

and h : (0,∞) → [0,∞) as
h = f + g .

An induction argument on the order of differentiation shows that there exists a constant C
such that

(2.27) |∇m
z w(z)| ≤ Ch(ωn−d|z|

n−d) if z ∈ Bn−d,

and ∇m
z w(z) = 0 otherwise. Thus, there exist constants C and C ′ such that

Ln
(
{x ∈ Rn : |∇mu| > t}

)
≤ Ln

(
{(y, z) ∈ Rn : φ(y)ψ(z)h(ωn−d|z|) > t}

)
(2.28)

≤ Ln
(
{(y, z) ∈ suppφ× suppψ : Ch(ωn−d|z|) > t}

)

≤ C ′Ln−d
(
{z ∈ Rn−d : Ch(ωn−d|z|) > t}

)

for t > 0. Hence, a constant C exists such that

|∇mu|∗(s) ≤ C
(
hχ(0,ωn−d)

)∗
(s/C)(2.29)

≤ C
(
(fχ(0,ωn−d))

∗(s/(2C)) + (gχ(0,ωn−d))
∗(s/(2C))

)
for s > 0.

Note that in the last inequality we have made use of the fact that, by a property of the
operation of decreasing rearrangement, (f + g)∗(s) ≤ f∗(s/2) + g∗(s/2) for s > 0 (see [BS,
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Chapter 2, Proposition 1.7]). By (2.29) and by the boundedness of the dilation operator in
any rearrangement invariant space (see [BS, Chapter 3, Proposition 5.11]),

(2.30) ‖∇mu‖X(Rn) = ‖|∇mu|∗‖X(0,∞) ≤ C
(
‖fχ(0,ωn−d)‖X(0,∞) + ‖gχ(0,ωn−d)‖X(0,∞)

)
,

for some constant C. On the other hand, it is easy to see that the Hardy-type operators
appearing on the right-hand side of (2.26) are bounded on L1(0,∞) and on L∞(0,∞),
and hence, by an interpolation theorem of Calderón ([BS, Chapter 3, Theorem 2.12]), they
are also bounded on any rearrangement invariant space on (0,∞). Hence, ‖g‖X(0,∞) ≤

C‖fχ(0,ωn−d)‖X(0,∞) <∞ for some constant C, and (2.21) follows from (2.30) and (2.23).
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