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Abstract

The interior C1,γ - regularity for a weak solution with BMO-gradient of a nonlinear
nonautonomous second order elliptic systems is investigated.

1 Introduction.

In this paper we give conditions guaranteeing that the BMO first derivatives of weak solutions
to a nonlinear elliptic system

−Dαa
α
i (x,Du) = −Dαf

α
i (x) on Ω ⊂ R

n, i = 1, . . . , N, α = 1, . . . , n (1.1)

belong to C0,γ(Ω,RnN). 1

The system (1.1) has been extensively studied. S. Campanato in [2],[3] proved that (under
suitable assumptions) Du ∈ L2,λ

loc (Ω,R
nN) with λ < n, and u ∈ C0,γ

loc (Ω,RN) for some γ < 1
if n = 3, 4. If aα

i are differentiable and have controllable growth then there is a positive ǫ
such that Du ∈ W 2,2+ǫ

loc (Ω,RnN) which implies that Du is locally Hölder continuous on Ω for
n = 2 (see [11], [7], [12]). For this reason we will concentrate on the case n > 2. From a
series of counterexamples starting from famous De Giorgi work (see [6] ) it is well known that
Du need not be continuous or even bounded (see [8], [10], [13], [16], [17]) for n > 2. Higher
smoothness of coefficients does not improve the smoothness of a solution, as there are examples
(see [14]) where the coefficients are real analytic while Du is bounded and discontinuous. On
the other hand, it follows immediately from so called direct proof of partial regularity (see [7],

[5])that if modulus of continuity of
∂aα

i

∂pj
β

is small enough then Du is Hölder continuous. For this

reason we concentrate on conditions that do not require smallness of L∞ norm of the modulus
of continuity and they imply that solutions with BMO gradients are C1,γ

loc Ω.
By a weak solution to (1.1) we understand u ∈W 1,2(Ω,RN) such that

∫

Ω

aα
i (x,Du(x))Dαϕ

i(x) dx =

∫

Ω

fα
i (x)Dαϕ

i(x) dx, ∀ϕ ∈ W 1,2
0 (Ω,RN).

Here Ω ⊂ R
n is an open set and, as we are interested in the interior regularity, we do not

assume that u solves a boundary value problem nor any smoothness of ∂Ω.
On the coefficients we suppose
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1Throughout the whole text we use the summation convention over repeated indices.

1
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(i) (Smoothness) aα
i (x, p) are differentiable functions in x and p with continuous derivatives.

(ii) (Growth) For all (x, p) ∈ Ω × R
nN denote Aαβ

ij (x, p) =
∂aα

i

∂pj
β

(x, p) and suppose

|aα
i (x, p)|,

∣

∣

∣

∣

∂aα
i

∂xs

(x, p)

∣

∣

∣

∣

≤ M(1 + |p|), (1.2)

∣

∣

∣A
αβ
ij (x, p)

∣

∣

∣ ≤ M, (1.3)

where M > 0,

(iii) (Ellipticity) There exist ν > 0 such that for every x ∈ Ω and p, ξ ∈ R
nN

ν|ξ|2 ≤ Aαβ
ij (x, p)ξi

αξ
j
β, (1.4)

(iv) (Oscillation of coefficients) There is a real function ω continuous on [0,∞), which is
bounded, nondecreasing, concave, ω(0) = 0 and such that for all x ∈ Ω and p, q ∈ R

nN

∣

∣

∣
Aαβ

ij (x, p) − Aαβ
ij (x, q)

∣

∣

∣
≤ ω (|p− q|) (1.5)

We set ω∞ = limt→∞ ω(t) ≤ 2M .

(v) fα
i ∈ W 1,2,

∂fα
i

∂xβ
∈ L2,δ−2 for δ = n+ 2γ, γ ∈ (0, 1), i = 1, ..., N .

It is well known (see [7], p.169) that for uniformly continuous Aαβ
ij there exists a real function

ω satisfying (iv) and, viceversa, (iv) implies uniform continuity of Aαβ
ij .

In what follows we will understand by pointwise derivative ω′ of ω the right derivative which
is finite on (0,∞).

For p, p′ ∈ (1,∞) such that 1
p

+ 1
p′

= 1 denote

Jp =

∞
∫

0

d
dt

(ω2p′)(t)

t
dt, (1.6)

Sp = sup
t∈(0,∞)

d

dt
(ω2p′)(t) (1.7)

and

Pp = min{Jp, Sp}. (1.8)

Now we formulate the result

Theorem 1.1 Let u be a weak solution to (1.1) such that Du ∈ BMO(Ω,RN) and coefficients
aα

i satisfy the hypotheses (i), (ii), (iii), (iv) with the constants M , ν, a modulus of continuity
ω and a right hand side f satisfying (v). Assume that there is a p ∈ (1, n

n−2
] such that Pp <∞.

Then the inequality
(

P 2
p ||Du||BMO

) 1

2p′ ≤ ν2C (1.9)

implies that Du ∈ C0,γ
loc (Ω,RN). Here C = 1

4C(p,n M
ν

)
τµ

2+τµ , L is given in Lemma 2.4, µ ∈ (n, n+2),

τ = (4L)
−1

n+2−µ and C(p, n, M
ν

) is given in (2.9).



Josef Daněček, Oldřich John & Jana Stará 3

2 Preliminaries and Notations.

Let n,N ∈ N, n ≥ 3. We will consider an open set Ω ⊂ R
n with points x = (x1, . . . xn).

For a vector-valued function u : Ω → R
N , u(x) =

(

u1(x), . . . , uN(x)
)

, N ≥ 1 put Du =
(D1u, . . . , Dnu), Dα = ∂/∂xα.

If x ∈ R
n and r is a positive real number, we set B(x, r) = {y ∈ R

n : |y − x| < r}. Denote
by ux,r = (κn r

n)−1
∫

B(x,r)
u(y) dy the mean value of the function u ∈ L1(B(x, r),RN) over the

set B(x, r) (κn being the volume of unit ball in R
n).

Moreover, we set φ(x, r) =
∫

B(x,r)
|Du(y) − (Du)x,r|

2 dy, U(x, r) = r−nφ(x, r).

Beside the usually used space C∞

0 (Ω,RN), Hölder space C0,α(Ω,RN) and Sobolev spaces
W k,p(Ω,RN), W k,p

0 (Ω,RN) we use Campanato spaces Lq,λ(Ω,RN), Morrey spaces Lq,λ(Ω,RN)
and space of functions with bounded mean oscillations BMO(Ω,RN)(see, e.g.[9]). By function
space Xloc(Ω,R

N) we understand the space of all functions which belong to X(Ω̃,RN) for any
bounded subdomain Ω̃ with smooth boundary which is compactly embedded in Ω.
For definitions and more details see [1], [7], [9] and [12]. In particular, we will use:

Proposition 2.1 For a bounded domain Ω ⊂ R
n with a Lipschitz boundary we have the fol-

lowing

(a) For q ∈ (1,∞), 0 < λ < µ <∞ we have

Lq,µ(Ω,RN) ⊂ Lq,λ(Ω,RN),

Lq,µ(Ω,RN) ⊂ Lq,λ(Ω,RN),

(b) Lq,λ(Ω,RN) is isomorphic to the C0,(λ−n)/q(Ω,RN), for n < λ ≤ n+ q,

(c) Lq,n(Ω,RN) is isomorphic to the L∞(Ω,RN),

Lq,n(Ω,RN) is isomorphic to BMO(Ω,RN),

(d) Lq,λ(Ω,RN) is isomorphic to the Lq,λ(Ω,RN), for 0 < λ < n.

By means of Nirenberg’s difference quotients method we obtain

Lemma 2.2 Let u be a weak solution to (1.1) and coefficients aα
i satisfy the hypotheses (i),

(ii), (iii), (iv) with the constants M , ν and a right hand side f ∈ W 1,2(Ω,RnN). Then u ∈
W 2,2

loc (Ω,RN) and for any x ∈ Ω and R ∈ (0, 1/2dist(x, ∂Ω)) it holds
∫

B(x,R)

|D2u|2dx ≤ C(
M

ν
)(

1

R2

∫

B(x,2R)

|Du− (Du)x,2R|
2dx

+ Rn +

∫

B(x,2R)

|Du|2dx+

∫

B(x,2R)

|Df |2dx). (2.1)

In what follows we will use an algebraic lemma due to S. Campanato. We start with recalling
it.

Lemma 2.3 (see [1]) Let α, d be positive numbers, A > 0, β ∈ [0, α). Then there exist ǫ0, C
positive so that for any nonnegative, nondecreasing function φ defined on [0, d] and satisfying
the inequality

φ(σ) ≤
(

A
( σ

R

)α

+K
)

φ(R) +BRβ ∀σ,R : 0 < σ < R ≤ d, (2.2)

with K ∈ (0, ǫ0] and B ∈ [0,∞) it holds

φ(σ) ≤ Cσβ
(

d−βφ(d) +B
)

, ∀σ : 0 < σ ≤ d. (2.3)
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Remark. Note that we can take any µ ∈ (β, α),

τ = min(1/2, (2A)
1

µ−α ), ǫ0 =
1

2
τµ.

For the statement of following Lemma see e.g.[2], [7], [12].

Lemma 2.4 Consider system of the type (1.1) with aα
i (x, p) = Aαβ

ij p
j
β, A

αβ
ij ∈ R (i.e. linear

system with constant coefficients) satisfying (i), (ii) and (iii). Then there exists a constant
L = L(n,M/ν) ≥ 1 such that for every weak solution v ∈ W 1,2(Ω,RN), for every x ∈ Ω and
0 < σ ≤ R ≤ dist(x, ∂Ω) the following estimate

∫

B(x,σ)

|Dv(y) − (Dv)x,σ|
2 dy ≤ L

( σ

R

)n+2
∫

B(x,R)

|Dv(y) − (Dv)x,R|
2 dy

holds.

Lemma 2.5 ([18], p.37) Let ψ : [0,∞] → [0,∞] be non decreasing function which is absolutely
continuous on every closed interval of finite length, ψ(0) = 0. If w ≥ 0 is measurable, E(t) =
{y ∈ R

n : w(y) > t} and µ is n-dimensional Lebesgue measure then

∫

Rn

ψ ◦ w dy =

∞
∫

0

µ (E(t))ψ′(t) dt.

Proof of theorem 1.1. Let x0 be any fixed point of Ω. We prove that Du ∈ L2,δ on a
neighborhood of x0. Let R ≤ 1/2dist(x0, ∂Ω). Where no confusion can result, we will use the
notation B(R), U(R), φ(R) and (Du)R instead of B(x0, R), U(x0, R), φ(x0, R) and (Du)x0,R.

Denote Aαβ
ij,0 = Aαβ

ij (x0, (Du)R),

Ãαβ
ij (x) =

1
∫

0

Aαβ
ij (x0, (Du)R + t (Du(x) − (Du)R)) dt.

Hence
aα

i (x0, Du(x)) − aα
i (x0, (Du)R) = Ãαβ

ij (x)
(

Dβu
j(x) −

(

Dβu
j
)

R

)

.

Thus we can rewrite the system (1.1) as

−Dα

(

Aαβ
ij,0Dβu

j
)

= −Dα

((

Aαβ
ij,0 − Ãαβ

ij

)

(

Dβu
j −

(

Dβu
j
)

R

)

)

−Dα (aα
i (x0, Du) − aα

i (x,Du)) −Dα(fα
i (x) − (fα

i )R).

Split u as v + w where v is the solution of the Dirichlet problem

−Dα

(

Aαβ
ij,0Dβv

j
)

= 0 in B(R)

v − u ∈W 1,2
0

(

B(R),RN
)

.

and w ∈ W 1,2
0 (B(R),RN) is the weak solution of the system

−Dα

(

Aαβ
ij,0Dβw

j
)

= −Dα

((

Aαβ
ij,0 − Ãαβ

ij

)

(

Dβu
j − (Dβu

j)R

)

)

−Dα (aα
i (x0, Du) − aα

i (x,Du)) −Dα (fα
i (x) − (fα

i )R) . (2.4)
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For every 0 < σ ≤ R from Lemma 2.4 it follows

∫

B(σ)

|Dv − (Dv)σ|
2 dx ≤ L

( σ

R

)n+2
∫

B(R)

|Dv − (Dv)R|
2 dx

hence
∫

B(σ)

|Du− (Du)σ|
2 dx ≤ 2L

( σ

R

)n+2
∫

B(R)

|Dv − (Dv)R|
2 dx+ 4

∫

B(R)

|Dw|2 dx

≤ 4L
( σ

R

)n+2
∫

B(R)

|Du− (Du)R|
2 dx

+ 4

(

1 + 2L
( σ

R

)n+2
) ∫

B(R)

|Dw|2 dx. (2.5)

Now as w ∈ W 1,2
0 (BR,R

N) we can choose test function ϕ = w in (2.4) and get

ν2

∫

B(R)

|Dw|2 dx ≤

∫

B(R)

ω2 (|Du− (Du)R|) |Du− (Du)R|
2 dx

+

∫

B(R)

|aα
i (x0, Du) − aα

i (x,Du)|2 dx

+

∫

B(R)

|fα
i (x) − (fα

i )R|
2 dx. (2.6)

From (2.5),(2.6) and Poincare’s inequality we have

φ(σ) =

∫

B(σ)

|Du− (Du)σ|
2 dx ≤ 4L

( σ

R

)n+2
∫

B(R)

|Du− (Du)R|
2 dx

+
4
(

1 + 2L
(

σ
R

)n+2
)

ν2







∫

B(R)

ω2 (|Du− (Du)R|) |Du− (Du)R|
2 dx

+

∫

B(R)

|aα
i (x0, Du) − aα

i (x,Du)|2 dx+R2

∫

B(R)

|Df |2 dx







≤ 4L
( σ

R

)n+2

φ(R) +
4
(

1 + 2L
(

σ
R

)n+2
)

ν2

[

(I1 + I2) +Rδ||Df ||2L2,δ−2

]

. (2.7)

Then using Hölder inequality with the exponent p from the assumptions of the Theorem,
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embedding and Lemma 2.2 we have

I1 ≤







∫

B(R)

|Du− (Du)R|
2p dx







1/p 





∫

B(R)

ω2p′ (|Du− (Du)R|) dx







1/p′

≤ C2
pR

2−n/p′
∫

B(R)

|D2u|2 dx







∫

B(R)

ω2p′ (|Du− (Du)R|) dx







1/p′

≤ C(p, n,M/ν)







1

κnRn

∫

B(R)

ω2p′ (|Du− (Du)R|) dx







1/p′

(φ(2R)

+ Rn+2 +R2||Du||2L2(B(2R)) +Rδ||Df ||2L2,δ−2(Ω)) (2.8)

where Cp stands for embedding constant from W 1,2(B(1),RnN) into L2p(B(1),RnN) and

C(p, n,M/ν) = C2
p × C(

M

ν
), (2.9)

C(M
ν

) is the constant from Lemma 2.2.

Taking in Lemma 2.5 ψ(t) = ω2p′(t), w = |Du− (Du)R| on B(R) and w = 0 otherwise, we
have ER(t) = {y ∈ B(R) : |Du− (Du)R| > t} and for the last integral we get

∫

B(R)

ω2p′ (|Du− (Du)R|) dx =

∞
∫

0

[

d

dt
(ω2p′)(t)

]

µ (ER(t)) dt.

Now we can estimate the integral on the right hand side according to assumptions of the
theorem. In the first case we assume that

Pp = Jp =

∞
∫

0

d
dt

(ω2p′)(t)

t
dt <∞.

As µ (ER(t)) is nonnegative, non-increasing it holds µ (ER(t)) ≤ 1
t

t
∫

0

µ (ER(s)) ds and we have

∞
∫

0

[

d

dt
(ω2p′)(t)

]

µ (ER(t)) dt ≤

∞
∫

0

d

dt
(ω2p′)(t)





1

t

t
∫

0

µ (ER(s)) ds



 dt

≤

∞
∫

0

d
dt

(ω2p′)(t)

t
dt

∫

B(R)

|Du− (Du)R| dx

≤ JpR
n/2φ1/2(R). (2.10)

If Pp = Sp = sup0<t<∞

d
dt

(ω2p′)(t) <∞ we have

∞
∫

0

[

d

dt
(ω2p′)(t)

]

µ (ER(t)) dt ≤ SpR
n/2φ1/2(R) (2.11)
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Denoting

K = C(p, n,
M

ν
)P 1/p′

p ‖Du‖
1/2p′

BMO (2.12)

and using (2.8), (2.10), (2.11) for the estimate of I1 we get

I1 ≤ Kφ(2R) +K(Rn+2 +R2||Du||2L2 +Rδ||Df ||2L2,δ−2) (2.13)

As we suppose that Du ∈ BMO(Ω) we have from Proposition 2.1 that Du ∈ L2,λ for any
λ < n. Set λ = δ − 2, R < 1. Hence

I1 ≤ Kφ(2R) +K(1 + ||Du||2BMO + ||Df ||2L2,δ−2)R
δ,

I2 ≤ M2R2

∫

B(R)

(

1 + |Du|2
)

dx ≤M2






κnR

n+2 +R2

∫

B(R)

|Du|2 dx







≤ M2
(

κn + ‖Du‖2
BMO(Ω)

)

Rδ (2.14)

for any λ < n, R < 1.
We get from (2.7) by means of (2.13) and (2.14)

φ(σ) ≤



4L
( σ

R

)n+2

+
4
(

1 + 2L
(

σ
R

)n+2
)

ν2
K



φ(2R)

+
4
(

1 + 2L
(

σ
R

)n+2
)

ν2
(K +M2)

(

κn + ‖Du‖2
BMO(Ω) + 2||Df ||2L2,δ−2(Ω)

)

Rδ. (2.15)

If the assumptions of Theorem are satisfied then

4 (1 + 2L(τ)n+2)

ν2
K < ǫ0

and we can use Lemma 2.3 with A = 4L and τ, ǫ0 given in the remark after Lemma 2.3 to get

φ(σ) ≤ Cσδ. (2.16)

The thesis follows from Proposition 2.1, part (b).
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