Remarks on O - regularity of weak solutions to elliptic
systems with BMO gradients
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Abstract
The interior C™Y - regularity for a weak solution with BMO-gradient of a nonlinear
nonautonomous second order elliptic systems is investigated.

1 Introduction.

In this paper we give conditions guaranteeing that the BMO first derivatives of weak solutions
to a nonlinear elliptic system

—Dyad(x,Du) = =Dyff(x) on QCR"i=1,...,Nya=1,...,n (1.1)

belong to C%7(Q, R™Y). 1

The system (1.1) has been extensively studied. S. Campanato in [2],[3] proved that (under
suitable assumptions) Du € £y (Q,R™) with A < n, and u € C7(Q,RY) for some vy < 1
it n = 3, 4. If af are differentiable and have controllable growth then there is a positive €
such that Du € W/lzof+6(Q,R”N ) which implies that Du is locally Holder continuous on € for
n = 2 (see [11], [7], [12]). For this reason we will concentrate on the case n > 2. From a
series of counterexamples starting from famous De Giorgi work (see [6] ) it is well known that
Du need not be continuous or even bounded (see [8], [10], [13], [16], [17]) for n > 2. Higher
smoothness of coefficients does not improve the smoothness of a solution, as there are examples
(see [14]) where the coefficients are real analytic while Du is bounded and discontinuous. On

the other hand, it follows immediately from so called direct proof of partial regularity (see [7],
daf
ap,]é
reason we concentrate on conditions that do not require smallness of L* norm of the modulus
of continuity and they imply that solutions with BMO gradients are Cllo’ZQ.

By a weak solution to (1.1) we understand v € W12(Q, R") such that

/af‘ (z, Du(x)) Do’ (7) do = /ff(x)Da¢’(x) de, Vy¢¢€ W(}’Z(Q,RN).

[5])that if modulus of continuity of is small enough then Du is Holder continuous. For this

Here 2 C R™ is an open set and, as we are interested in the interior regularity, we do not
assume that u solves a boundary value problem nor any smoothness of 0f2.
On the coefficients we suppose
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(i) (Smoothness) af(z,p) are differentiable functions in x and p with continuous derivatives.

(ii) (Growth) For all (z,p) € Q x R™ denote Aiajﬁ(x,p) = ZZ? (x,p) and suppose
5

a®
el |G| < MO+ ) (12)
A @p)| < M (13)

where M > 0,

(iii) (Elipticity) There exist v > 0 such that for every x € Q and p, £ € R™Y
v[E)® < A7 (e, p)ELED, (1.4)

(iv) (Oscillation of coefficients) There is a real function w continuous on [0,00), which is
bounded, nondecreasing, concave, w(0) = 0 and such that for all z € Q and p, ¢ € R™Y

A (w,p) — A (2,9)| < w (p— q) (1.5)
We set woo = limy_o w(t) < 2M.

(v) foe w2, jﬁj;} €L 2for § =n+2y,v€(0,1),i=1,....N.

It is well known (see [7], p.169) that for uniformly continuous A7 7 there exists a real function
w satisfying (iv) and, viceversa, (iv) implies uniform continuity of AZJ- :

In what follows we will understand by pointwise derivative w’ of w the right derivative which
is finite on (0, 00).

For p,p’ € (1,00) such that l + i, = 1 denote

- e, o

H.

d /
Sp= sup L)1) (1.7)
t€(0,00) dt
and
P, =min{J,, S,}. (1.8)

Now we formulate the result

Theorem 1.1 Let u be a weak solution to (1.1) such that Du € BMO(Q,RY) and coefficients
a$ satisfy the hypotheses (i), (ii), (iii), (iv) with the constants M, v, a modulus of continuity

w and a right hand side [ satisfying (v). Assume that there is a p € (1, 5] such that P, < co.
Then the inequality

1
(P2|]Du||BMO)27’ <20 (1.9)
implies that Du € CYY(Q,RN). Here C' =

loc

? 2+TH , L is given in Lemma 2.4, i € (n,n+2),

T = (4L)n+3£u and C(p,n, ™) is given in (2.9).
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2 Preliminaries and Notations.

Let n, N € N, n > 3. We will consider an open set 2 C R" with points z = (z1, ... z,).

For a vector-valued function u : @ — RY, u(z) = (u'(z),...,u"(z)), N > 1 put Du =
(Dyu, ..., Dyu), Dy = 0/0x,.

If x e R" and ris a positive real number, we set B(z,r) = {y € R" : |y — 2| < r}. Denote
by sy = (K 7™) 7" [5,., w(y) dy the mean value of the function u € L'(B(x,r),R") over the

set B(z, r) (Kn belng the Volume of unit ball in R™).
Moreover, we set ¢(x,r) = fB(z " |Du(y) — (Du),,|*dy, U(x,7) = r"¢(x,7).

Beside the usually used space C5°(Q, RY), Hélder space C%* (€2, RY) and Sobolev spaces
Whe(Q,RN), WrP(Q,RY) we use Campanato spaces £9*(Q,RY), Morrey spaces L2 (€2, RY)
and space of functions with bounded mean oscillations BMO(£2, RY)(see, e.g.[9]). By function
space Xjoe(Q, RY) we understand the space of all functions which belong to X (€, RY) for any
bounded subdomain  with smooth boundary which is compactly embedded in .

For definitions and more details see [1], [7], [9] and [12]. In particular, we will use:

Proposition 2.1 For a bounded domain 2 C R™ with a Lipschitz boundary we have the fol-
lowing

(a) Forqe (1,00),0 <X < p < oo we have
L#(Q,RY) C L#(Q,RY),
LY(Q,RY) C L7(Q,RY),
(b) LIQ,RN) is isomorphic to the COA/1(Q RN), forn < X <n+q,
(c) L™(,RY) is isomorphic to the L= (Q, RY),
L3™(Q,RYN) is isomorphic to BMO(Q,RY),
(d) L9*(Q,RYN) is isomorphic to the LI*(Q,RYN), for 0 < A < n.
By means of Nirenberg’s difference quotients method we obtain

Lemma 2.2 Let u be a weak solution to (1.1) and coefficients a satisfy the hypotheses (i),
(ii), (iii), (iv) with the constants M, v and a right hand side f € W12(Q,R"™). Then u €
W2 (Q,RY) and for any x € Q and R € (0,1/2dist(x, 0Q)) it holds

loc
M. 1
/ D2uPdr < O (o / Dut — (Du)p o |da
B(x,R) R B(xz,2R)

+ R" +/ | Dul*dx +/ |Df|?dx). (2.1)
(z,2R) B(z,2R)
In what follows we will use an algebraic lemma due to S. Campanato. We start with recalling
it.
Lemma 2.3 (see [1]) Let o, d be positive numbers, A >0, 5 € [0,«). Then there exist €y, C

positive so that for any nonnegative, nondecreasing function ¢ defined on [0,d] and satisfying
the inequality

é(0) < <A (%)a ¥ K) 6(R)+ BR® Yo,R:0<o0 < R<d, (2.2)
with K € (0, ¢ and B € [0,00) it holds
¢(o) < Co” (dP¢(d)+B), Vo :0<o<d (2.3)
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Remark. Note that we can take any u € (3, «),

1
7 =min(1/2, (2A)ﬁ),60 = 57’“.

For the statement of following Lemma see e.g.[2], [7], [12].
Lemma 2.4 Consider system of the type (1.1) with a$(z,p) = A-Og-ﬁp%, A?jﬁ € R (i.e. linear

system with constant coefficients) satisfying (i), (ii) and (iii). Then there exists a constant

L = L(n,M/v) > 1 such that for every weak solution v € WH3(Q,RY), for every x € Q and
0 <o < R <dist(x,00) the following estimate

[ Do) - oot a2 () [ 1D0t) — Do)l

B(z,0) B(z,R)
holds.
Lemma 2.5 ([18], p.37) Let ) : [0, 00| — [0, 00] be non decreasing function which is absolutely

continuous on every closed interval of finite length, 1(0) = 0. If w > 0 is measurable, E(t) =
{y e R" : w(y) >t} and p is n-dimensional Lebesque measure then

[vowdy= 7  (B(1) /() dt.

Proof of theorem 1.1. Let 2, be any fixed point of . We prove that Du € £>% on a
neighborhood of zy. Let R < 1/2dist(zg,0S2). Where no confusion can result, we will use the
notation B(R), U(R), ¢(R) and (Du)g instead of B(z, R), U(zo, R), ¢(x0, R) and (Du)y, g
Denote Af‘j’?o = Af‘jﬁ (20, (Du)g),
1

A% (z) = / A% (2, (Du)g + t (Du(x) — (Du)g)) dt.
Hence ) . '
a (xg, Du(x)) — a (xo, (Du)g) = A?;-B(x) (D () — (Dgu?) ) -

)

Thus we can rewrite the system (1.1) as

~Da (453D’ ) = = Do (A% — A7) (D — (D) )
— Da (a (zo, Du) — ai'(z, Du)) = Do(f7*(2) = (fi")r)-

Split u as v + w where v is the solution of the Dirichlet problem
D, (A;;?ODW) —0 in B(R)
v—ueWy?(B(R),RY).
and w € W, (B(R),RYN) is the weak solution of the system
Dyu ) = . (A5 — A7) (D! — (D))
—Da (a (x0, Du) — ai'(x, Du)) — Do (f(2) = (f7)r) . (2.4)

—D, (A?“ﬂ

15,0
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For every 0 < 0 < R from Lemma 2.4 it follows
9 o\ nt2 9
/ |Dv — (Dv),|” de < L <§) / |Dv — (Dv)g|” dx
B(o) B(R)
hence
9 O' n+2 9
|Du— (Du),|* de < 2L<R \Dv— (Do)pl* de+4 | |Dwl?dx
B(o) B(R) B(R)
o n+2 9
< ar (%) / D — (Du)g|? dz

B(R)

+ 4<1+2L )/|Dw|2dx (2.5)

Now as w € Wy*(Bgr,RY) we can choose test function ¢ = w in (2.4) and get

2 / |Dw|*dx < /c‘12(|Du—(Du)R|)|Du—(Du)R|2 dx

B(R) B(R)

+ / % (20, Du) — af(z, Du)|? dx
B(R)

/ 7o) — ()P da (26)

From (2.5),(2.6) and Poincare’s inequality we have

d(0) = / |Du — (Du),|* dw < 4L (%)M / |Du— (Du)g|* da
B(o) B(R)
4(142L(2)"
< 2(R) ) / w2(|Du—(Du)R|)|Du—(Du)R|2 dx
B(R)

_|_

14

+ / |a% (o, Du) — a(z, Du)|” dx + R? / |Df)? dx
B(R) B(R)
(1422 ()"

2

< 4L< >n+2¢(3)+ )[(Il—i_[?)_'—RaHDfHQL?ﬁ?]' (2.7)

R

Then using Hoélder inequality with the exponent p from the assumptions of the Theorem,
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embedding and Lemma 2.2 we have
1/p 1/p
L < / |Du — (Du)g|* dx / W (|Du — (Du)g|) dx
B(R) B(R)
1/p
< C’ng_”/p, / | D?ul? da / w? (|Du — (Du)g|) dz
B(R) B(R)

1/p'

< ClomMp) | [ ¥ (Du- Duprl do | ol2
B(R)

+ R4 RQHDU||%2(B(2R)) + R5||Df||%2$5_2(9)) (2.8)

where C,, stands for embedding constant from W?(B(1),R"") into L?(B(1), R™Y) and

C(p,n, M/v) = C? x C(M) (2.9)

C(2) is the constant from Lemma 2.2.

Taking in Lemma 2.5 ¢(t) = w?'(t), w = |Du — (Du)g| on B(R) and w = 0 otherwise, we
have Er(t) ={y € B(R) : |Du— (Du)g| > t} and for the last integral we get

[ & (1D~ (D) s = 7 [%W’)(t)}  (En(t)) d.

B(R)

Now we can estimate the integral on the right hand side according to assumptions of the
theorem. In the first case we assume that

T odg, 2 t
Pp:Jpz/—dt<wt @ 4t < oo,
0

¢
As 11 (Eg(t)) is nonnegative, non-increasing it holds p (Eg(t)) < 1 [ p(Er(s)) ds and we have
0

7[ 0] (Ente) a s]o ) %/MER s | d

(w?)(t)

< /%dt |Du — (Du)g| dz
0

&lg

&.l&

< J,R"?¢'*(R). (2.10)

If P, =5, =supjicoo %(wzp')(t) < oo we have

[ |G 0] nEntey a < sy (211)

0
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Denoting
_ M. i 1/2p’

and using (2.8), (2.10), (2.11) for the estimate of I; we get
I < K$(2R) + K(R"? + R*|| Dul[7. + R’|| D f|[]25-2) (2.13)

As we suppose that Du € BMO(f) we have from Proposition 2.1 that Du € L?>* for any
A<n. Set A\=0—2,R < 1. Hence

L < K6(2R) + K(1+ ||Dulfpuo + [|Df|[725-2) R,

I, < M?R? / (14 |Dul?) dov < M? | k,R"** + R? / | Dul? dx
B(R) B(R)
< M? (i + || DulBrro@) R (2.14)

for any A <n, R < 1.
We get from (2.7) by means of (2.13) and (2.14)

¢(0) < |4L (%)"+2+4(1+2;(%)n+>1( $(2R)

1(1+22(5)")

2

+ (K + M2) (5 + | Dulinso@) + 21D Bas 2oy ) B (215)

If the assumptions of Theorem are satisfied then

4(1+2L(T)"*2)

K < ¢

and we can use Lemma 2.3 with A = 4L and 7, ¢y given in the remark after Lemma 2.3 to get
o(c) < Co. (2.16)

The thesis follows from Proposition 2.1, part (b).
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