
ON EFFICIENT NUMERICAL APPROXIMATION

OF THE BILINEAR FORM c∗A−1b ‡

ZDENĚK STRAKOŠ† AND PETR TICHÝ∗

Abstract. Let A ∈ CN×N be a nonsingular complex matrix and b and c complex vectors of
length N . The goal of this paper is to investigate approaches for efficient approximations of the
bilinear form c∗A−1b. Equivalently, we wish to approximate the scalar value c∗x where x solves
the linear system Ax = b. Here the matrix A can be very large or its elements can be too costly
to compute so that A is not explicitly available and it is used only in the form of the matrix-
vector product. Therefore a direct method is not an option. For A Hermitian positive definite,
b∗A−1b can be efficiently approximated as a by-product of the conjugate-gradient iterations, which
is mathematically equivalent to the matching moments approximations computed via the Gauss-
Christoffel quadrature. In this paper we propose a new method using the biconjugate gradient
iterations which is applicable to the general complex case. The proposed approach will be compared
with existing ones using analytic arguments and numerical experiments.

Key words. Bilinear forms, scattering amplitude, method of moments, Krylov subspace meth-
ods, CG method, BiCG method, Lanczos algorithm, Arnoldi algorithm, Gauss-Christoffel quadra-
ture, model reduction.

AMS subject classifications. 15A06, 65F10, 65F25, 65G50.

1. Introduction. Given a nonsingular square matrix A ∈ CN×N and vectors
b and c of compatible dimensions, many applications require approximation of the
quantity

c∗A−1b .(1.1)

They arise in signal processing under the name scattering amplitude, as well as in nu-
clear physics, quantum mechanics, computational fluid dynamics; see [44, 20] and the
references given there. In numerical linear algebra they arise naturally in computing
error bounds for iterative methods, in solving inverse problems, least and total least
squares problems etc.; see [19]. This paper presents an approach for approximating
c∗A−1b that is designed to be computationally efficient. For context, we also briefly
summarize existing techniques for approximating c∗A−1b, notably in the special cases
when A, b, and c are real or when A is Hermitian positive definite (HPD).

Given the solution x of the linear algebraic system Ax = b, (1.1) can be reformu-
lated as

c∗A−1b = c∗x .

In most applications, c∗A−1b need not be computed to a high accuracy; an approx-
imation correct to very few digits of accuracy is sufficient. Therefore direct solution
of Ax = b is even for problems of moderate size inefficient. If A is sufficiently large or
the elements of A are too costly to compute, then the direct solution is not possible.

†Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague, Czech
Republic, email: strakos@karlin.mff.cuni.cz.

∗Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou
věž́ı 2, 18207 Prague, Czech Republic, email: tichy@cs.cas.cz.

‡This work is a part of the research project MSM0021620839 financed by the Ministry of Edu-
cation of the Czech Republic (Z. Strakoš) and of the Institutional Research Plan AV0Z10300504 (P.
Tichý). The work was also partially supported by the GAAS grant IAA100300802, by the project
M100300901 of the institutional support of ASCR, and by the GACR grant 201/09/0917.

1

2 Z. Strakoš and P. Tichý

A strategy used by several authors is to generate a sequence {xk} of approximate
solutions to Ax = b using a Krylov subspace method, and to approximate c∗A−1b
by c∗xn for sufficiently large n. However, even when A is HPD, this approximation
may require a large number of iterations as a result of rounding errors affecting xn;
see [52, 53]. A variety of approaches for approximating c∗A−1b have been developed
based on quadrature and moments; see, for example, [17]. The extensive literature
about connections between moments, iterative methods, and model reduction is too
large to summarize here; we mention, as five examples among hundreds, [24, 13, 4, 2]
and [11]. The same is true for related literature in the area of physical chemistry
and solid state physics computations; for reviews of early papers see [23, 40, 45].
The mathematical roots can be found in the work on orthogonal polynomials and
continued fractions by Chebyshev [7] and Stieltjes [49].

The ideas in this paper for the general complex case (which includes also real
nonsymmetric case) are based on non-Hermitian generalizations of Vorobyev moment
problems [55] (to be defined in Section 2). Algorithmically, this paper extends the
results presented in [52, 53] from the HPD case and the conjugate gradient method
(CG) to the general complex case and the biconjugate gradient method (BiCG).

2. Matching moments in Krylov subspace methods and the Vorobyev

moment problem. To motivate our approach, Sections 2.1–2.2 summarize some of
the well known connections between two Krylov subspace methods, model reduction,
and moments. In Krylov subspace methods it might be convenient to consider nonzero
initial approximations x0 and y0 to the solutions of Ax = b and A∗y = c respectively.
That is equivalent to applications of the same methods, with the zero initial approx-
imations, to Ax = b respectively A∗y = c, where b = b−Ax0, c = c−A∗y0 are the
initial residuals and x = x− x0, y = y − y0 are unknown. Using

c∗A−1b = c∗x0 + y∗0b+ c∗A−1b ,

c∗A−1b can always be approximated via c∗A−1b using zero initial approximations of
x, y. Throughout this paper we will therefore consider, with no loss of generality,
zero initial approximations.

2.1. Lanczos algorithm as model reduction. Let A ∈ CN×N be a nonsingu-
lar matrix and the vectors v1 and w1 of length N satisfy ‖v1‖ = 1, w∗

1v1 = 1. The nth
step of the non-Hermitian Lanczos algorithm applied to A with the starting vectors
v1 and w1 is associated with the following relations

AVn = VnTn + δn+1vn+1e
T
n ,

A∗Wn =WnT
∗
n + β∗

n+1wn+1e
T
n ,(2.1)

where W ∗
nVn = I, Tn = W ∗

nAVn, ‖vn+1‖ = 1, w∗
n+1vn+1 = 1, and the main diago-

nal, the first subdiagonal and the first superdiagonal of Tn are given by γ1, . . . , γn,
δ2, . . . , δn, and β2, . . . , βn respectively, δℓ > 0, βℓ 6= 0, ℓ = 2, . . . , n; see, e.g., [41,
Section 7.1]. Here it is assumed that the algorithm does not break down in steps 1
through n. The columns of Vn form a basis of Kn(A, v1),

Kn(A, v1) ≡ span{v1, Av1, . . . , An−1v1} = span{v1, . . . , vn} ,

while the columns of Wn form a basis of Kn(A
∗, w1). Under the given assumption on

existence of the steps 1 through n, the non-Hermitian Lanczos algorithm represents
the reduction of the original model which consists of the matrix A and two vectors v1

On efficient numerical approximation of c∗A−1b 3

and w1 to the reduced model which consists of the matrix Tn and two identical vectors
e1 and e1. The reduced model matches the first 2n moments

w∗
1A

kv1 = eT1 T
k
ne1 , k = 0, 1, . . . , 2n− 1 .(2.2)

Relation (2.2) can be derived from the Vorobyev moment problem, which is to deter-
mine a linear operator An on Kn(A, v1) such that

Aj
nv1 = Ajv1, j = 1, . . . , n− 1, and An

nv1 = VnW
∗
nA

nv1 .(2.3)

Defining An as the restriction of A to Kn(A, v1) projected orthogonally to Kn(A
∗, w1)

(which represents an oblique projection to Kn(A, v1))

An = VnW
∗
nAVnW

∗
n ,(2.4)

it follows from the relation Tn =W ∗
nAVn that

An = VnTnW
∗
n(2.5)

and

w∗
1A

kv1 = w∗
1A

k
nv1 = eT1 T

k
ne1 , k = 0, 1, . . . , 2n− 1 ;(2.6)

see [51]. The matching moment property (2.2) of the non-Hermitian Lanczos algo-
rithm will be linked with the new numerical approximation of the bilinear form (1.1)
proposed in Section 3.1.

If A is Hermitian and w1 = v1, the non-Hermitian Lanczos algorithm reduces to
the Hermitian Lanczos algorithm that is associated with the relation

AVn = VnTn + δn+1vn+1e
T
n ,

where Tn is the Jacobi matrix, and V ∗
n Vn = I. In this case, the linear operator An

is the restriction of A to Kn(A, v1) projected orthogonally to Kn(A, v1). For more
details see [55, Chapter III, Sections 2-4], with the summary given in [51].

2.2. Arnoldi algorithm as model reduction. The model reduction repre-
sented by the Lanczos algorithm matches the first 2n moments (2.2). In the non-
Hermitian case, the matrix Tn in (2.2) is determined by oblique projections. This
may affect in a negative way conveying information from the original to the reduced
model. We therefore need to compare the new numerical approximation proposed in
Section 3.1 with the model reduction determined by orthogonal projections. This in
the non-Hermitian case leads to long recurrences and the Arnoldi algorithm.

Let A ∈ CN×N be a nonsingular matrix, let v1 and u1 be vectors of length N ,
‖v1‖ = ‖u1‖ = 1. The nth step of the Arnoldi algorithm applied to A with v1 is
associated with the relation

AVn = VnHn + hn+1,nvn+1e
T
n ,(2.7)

where V ∗
n Vn = In, Hn = V ∗

nAVn, V
∗
n vn+1 = 0, and Hn is the upper Hessenberg

matrix with positive entries on the first subdiagonal; see, e.g., [41, Section 6.3]. The
matching moment property of the Arnoldi algorithm can be expressed in the form

u∗1A
kv1 = u∗1VnH

k
ne1 = t∗nH

k
ne1 , k = 0, . . . , n− 1 ,(2.8)

4 Z. Strakoš and P. Tichý

where u1 ≡ Vntn + u⊥1 = Vn(V
∗
n u1) + u⊥1 , and u

⊥
1 is the component of u1 orthogonal

to Kn(A, v1). With u1 = v1 we can add one more moment. To derive (2.8), we
invoke the Vorobyev moment problem linked with the Arnoldi algorithm, which is to
determine a linear operator on Kn(A, v1) such that

Aj
nv1 = Ajv1, j = 1, . . . , n− 1, and An

nv1 = VnV
∗
nA

nv1 .(2.9)

Defining An as the restriction of A to Kn(A, v1) projected orthogonally to Kn(A, v1)

An =VnV
∗
nAVnV

∗
n ,(2.10)

it follows from the relation Hn = V ∗
nAVn that

An = VnHnV
∗
n(2.11)

and

u∗1A
kv1 = u∗1A

k
nv1 = t∗nH

k
ne1 , k = 0, 1, . . . , n− 1 .(2.12)

Since A is non-Hermitian, the matching moment property can not in general be ex-
tended beyond n moments; see [51].

3. Numerical approximation of the bilinear form c∗A−1b. The relationship
of CG to the Gauss-Christoffel quadrature, continued fractions and moments was
pointed out in the founding paper by Hestenes and Stiefel [29, Sections 14–18]; see also
[55, Chapter III, Section 2, pp. 53 and 59] and the summary in [34, pp. 483–484 and
p. 493]. In the framework of the Vorobyev moment problem, CG and the Hermitian
Lanczos algorithm, the non-Hermitian Lanczos algorithm and the Arnoldi algorithm
look for a reduced order operator An (see (2.5) and (2.11)), with the property of
matching the maximal number of moments; see (2.6) and (2.12). An approximation
of the bilinear form c∗A−1b can be then expressed as

c∗A−1
n b ,(3.1)

where A−1
n is the matrix representation of the inverse of the reduced order operator

An which is restricted onto Kn(A, b); see, e.g., [30, p. 79]. As an example,

A−1
n = VnT

−1
n W ∗

n(3.2)

holds for the non-Hermitian Lanczos algorithm (see (2.5)). Considering the starting
vectors v1 = b/‖b‖ and w1 = c‖b‖/c∗b, we get

c∗A−1
n b =

c∗b

‖b‖w
∗
1VnT

−1
n Wnv1‖b‖ = (c∗b) eT1 T

−1
n e1 .(3.3)

To our knowledge, the formula eT1 T
−1
n e1 was used for the symmetric positive definite

case for the first time by Golub and coworkers [8, 15, 9]; for a survey see, e.g., [19], [34,
Section 3.3], [16, part V, with the commentary given by Gautschi]. In this section we
propose new ways of computing c∗A−1

n b using the BiCG-related methods and relate
them to existing approaches.

Our results presented below can be derived without using (3.3) and even without
mentioning the Vorobyev moment problem. In order to get an insight into the problem
of approximating the bilinear form c∗A−1b (see, e.g., the brief discussion of the Arnoldi
algorithm and BiCG in the last section of this paper), this link is, in our opinion,
important, similarly as the link with the Gauss-Christoffel quadrature is important
for understanding the behavior of the Lanczos algorithm and CG; see, e.g., [29, 25],
[21, Section 5 on rounding error analysis].

On efficient numerical approximation of c∗A−1b 5

3.1. Approximation based on the BiCG method. The BiCG method [33,
10] (see Algorithm 1) solves simultaneously the primal and dual systems of linear
algebraic equations Ax = b and A∗y = c; see [50, 20]. BiCG computes sequences of
approximations {xn} and {yn} such that xn ∈ Kn(A, b) and yn ∈ Kn(A

∗, c), while

rn ≡ b−Axn ⊥ Kn(A
∗, c), sn ≡ c−A∗yn ⊥ Kn(A, b) .(3.4)

Assuming that there is no breakdown in the first n steps, the sequences of approximate

Algorithm 1 Biconjugate Gradient Method (BiCG)

input A, A∗, b, c, x0 = 0, y0 = 0
r0 = p0 = b , s0 = q0 = c
for n = 0, 1, . . .

αn =
s∗
n
rn

q∗
n
Apn

xn+1 = xn + αnpn , yn+1 = yn + α∗
nqn

rn+1 = rn − αnApn , sn+1 = sn − α∗
nA

∗qn

ηn+1 =
s∗
n+1rn+1

s∗
n
rn

pn+1 = rn+1 + ηn+1pn , qn+1 = sn+1 + η∗n+1qn
end

solutions in the BiCG method have the form

xn = Vnfn and yn =Wngn,(3.5)

for some vectors fn and gn. Relation (3.2) which gives an expression for A−1
n suggests

using c∗A−1
n b as an approximation of c∗A−1b; see (3.3). We now show how this

approximation computed from the iterates of the non-Hermitian Lanczos algorithm
(described in Section 2.1) with starting vectors v1 = b/‖b‖, w1 = c‖b‖/c∗b, is related
to the BiCG method. In order to derive a formula for c∗A−1

n b, we invoke two kinds
of global biorthogonality conditions associated with the BiCG method:

W ∗
nrn = 0 and V ∗

n sn = 0,(3.6)

W ∗
nb = ‖b‖W ∗

nv1 = ‖b‖e1.(3.7)

The conditions (3.6) lead to linear systems ‖b‖e1 = Tnfn and (v∗1c) e1 = T ∗
ngn

for the unknown coordinates fn and gn. Consequently, xn = ‖b‖VnT−1
n e1, yn =

(v∗1c)Wn(T
∗
n)

−1e1. Then, using the global orthogonality relations (3.7), we have

c∗A−1
n b = c∗VnT

−1
n W ∗

nb = c∗xn .(3.8)

Analogously, the dual quantity is given by

b∗(A−1
n)∗c = b∗Wn(T

∗
n)

−1V ∗
n c = b∗yn.(3.9)

The last term in (3.8) gives the well-known scattering amplitude approximation to
c∗x; see [56, 44, 43]. Please note also that from (3.8)

c∗A−1
n b = c∗b (T−1

n)1,1(3.10)

(see (3.3)), where the value (T−1
n)1,1 can be easily computed at a negligible additional

cost using the algorithm in [17, p. 135]. It is worth pointing out that evaluation of
(3.10) does not require explicit computation of xn.

6 Z. Strakoš and P. Tichý

The global biorthogonality conditions (3.6) and (3.7) needed for the derivation of
(3.8) and (3.9) are in general not satisfied in finite precision computations. Due to
rounding errors, computing sufficiently accurate approximations using (3.8) (or (3.9))
may require a large number of iterations that are (as shown below) not necessary.
Therefore we present a new mathematically equivalent approximation which will be
derived using only local biorthogonality. Using the expressions for sj+1, rj+1 and pj
in Algorithm 1, we have for j = 0, . . . , n− 1

s∗jA
−1rj − s∗j+1A

−1rj+1

= (sj+1 + α∗
jA

∗qj)
∗A−1(rj+1 + αjApj)− s∗j+1A

−1rj+1

= α2
jq

∗
jApj + αjs

∗
j+1pj + αjq

∗
j rj+1

= αjs
∗
jrj + αj(s

∗
j+1pj + q∗j rj+1) = αjs

∗
jrj .(3.11)

For the last equality we used the local biorthogonality between the residuals and the
search directions of the primal and dual problem,

s∗j+1pj = 0 and q∗j rj+1 = 0 .(3.12)

Consequently, using

c∗A−1b− s∗nA
−1rn =

n−1
∑

j=0

(

s∗jA
−1rj − s∗j+1A

−1rj+1

)

we finally obtain

c∗A−1b =

n−1
∑

j=0

αjs
∗
jrj + s∗nA

−1rn .(3.13)

Relation (3.13) is significant because it provides an exact expression for c∗A−1b, the
first term of which is a summation involving the (available) inner product of the BiCG
primal and dual residuals. As well, (3.13) generalizes the result from the HPD case,
in which b∗A−1b and rnA

−1rn equal, respectively, the squared A-norms of the errors
at steps 0 and n; see [52].

If the primal and dual residuals in the BiCG method become small, the second
term s∗nA

−1rn on the right-hand side of (3.13) will also become small. This suggests
approximating c∗A−1b by the following quantity:

ξB

n ≡
n−1
∑

j=0

αjs
∗
jrj(3.14)

where the superscript “B” means “BiCG”. Although, as we show later, ξB

n is equal
to c∗xn using exact arithmetic, the summation form of ξB

n in (3.14) is crucial for
computational purposes.

Summarizing, c∗A−1b can be approximated using (3.8), (3.10) and by the new
ξB

n defined in (3.14). It remains to prove that these estimates are mathematically (in
exact arithmetic) equivalent. A short algebraic manipulation gives

c∗A−1b− c∗xn = c∗A−1rn

= c∗A−1rn − y∗nrn + y∗nrn

= s∗nA
−1rn + y∗nrn .(3.15)

On efficient numerical approximation of c∗A−1b 7

Using the global biorthogonality condition (3.6) and yn = Wngn (see (3.5)) we get
y∗nrn = 0 and, consequently,

c∗A−1b = c∗xn + s∗nA
−1rn .(3.16)

Comparing (3.13), (3.16), (3.8), and (3.10) we obtain the (exact arithmetic) equiva-
lence

ξB

n =
n−1
∑

j=0

αjs
∗
jrj = c∗xn = c∗b (T−1

n)1,1 .(3.17)

Although ξB

n was derived by simple algebraic manipulations without using (3.1), the
equivalence (3.17) shows its connection to matching moments model reduction. This
connection is, in our opinion, significant for understanding the proposed estimate
ξB

n representing a numerically efficient way of computing (3.1). It is worth pointing
out that analogously to the HPD case (see [52]), in finite precision computations
(3.17) does not hold, and, as demonstrated below, the individual (mathematically
equivalent) approximations can behave very differently.

Saylor and Smolarski [44] introduced formally orthogonal polynomials and com-
plex Gauss quadrature as a tool for approximating the quantity c∗A−1b (for an earlier
introduction of the Gauss quadratures associated with the non-Hermitian Lanczos
algorithm see, e.g., [12]). The paper [44] presents an approximation to c∗A−1b math-
ematically equivalent to c∗xn. Its derivation assumes that the matrix A is diagonal-
izable (which is restrictive). Moreover, the result is computationally less convenient
than the new ξB

n defined by (3.14). Therefore we will not consider the approximation
from [44] in further detail.

Apart from the existence of the BiCG iterations in the steps 1 through n, ξB

n does
not require any further assumptions. It can be computed with negligible additional
cost from the quantities αj and s∗jrj available during the BiCG run. Please note that
in order to compute ξB

n, the approximate solutions xn and yn need not be formed.

3.2. Estimating c∗A−1b using hybrid BiCG methods. Each step of BiCG
requires a matrix-vector product with A and a matrix-vector product with A∗. The
idea of Sonneveld [48] was to avoid the multiplication with A∗. The resulting Conju-
gate Gradient Squared algorithm (CGS) uses two multiplications with A per iteration
and it computes approximate solutions only to the primal system. In order to smooth
out possible oscillations and to obtain faster convergence, Sonneveld’s idea was fur-
ther developed by Van der Vorst, Gutknecht, their coworkers and other authors to
hybrid BiCG methods like BiCG Stabilized (BiCGStab) [54]; see also [27], [47], [3,
Chapter 5].

Denoting by rn the residual corresponding to the approximate solution xn com-
puted by a hybrid BiCG method, we get

c∗A−1b = c∗x = c∗xn + c∗(x− xn) = c∗xn + c∗A−1rn.(3.18)

It is natural to ask whether the inner product c∗xn provides a better approximation
to c∗A−1b than the BiCG–based c∗xn. To answer this question, we write the residual
vector rn in the form

rn = ψn(A) rn ,

8 Z. Strakoš and P. Tichý

where rn is the BiCG residual and ψn is a polynomial of degree n such that ψn(0) = 1,
i.e. ψn(z) = 1 + zϕn−1(z), where ϕn−1 is a polynomial of degree n − 1. The choice
of ψn determines the particular hybrid BiCG method. From

b−Axn = rn = ψn(A)rn = rn +Aϕn−1(A)rn = b−Axn +Aϕn−1(A)rn

we get

xn = xn − ϕn−1(A)rn.

Since ϕn−1(A)
∗c ∈ Kn(A

∗, c) and rn ⊥ Kn(A
∗, c), we finally get

c∗xn = c∗xn − (ϕn−1(A)
∗c)∗rn = c∗xn .(3.19)

In other words, although xn can be a better (or worse) approximation to x than the
BiCG approximation xn, both provide the mathematically identical approximations
to c∗A−1b.

The BiCG coefficients αj are available in hybrid BiCG methods. The BiCG
residuals rj and sj are not available, but the inner products s∗jrj can be computed

as s∗jrj = s∗0ψ̃j(A)rj ≡ τj providing that the leading coefficients in ψ̃j and in the
polynomial defining sj are equal. Then

ξB

n =

n−1
∑

j=0

αjτj .(3.20)

Alternatively, we can compute τj using the explicitly available coefficients ηj as

τ0 ≡ c∗b, τj ≡ ηjτj−1 =

j−1
∏

k=0

s∗k+1rk+1

s∗krk
= s∗jrj , j = 1, . . . , n− 1 .(3.21)

Although ξB

n computed via (3.20) using hybrid BiCG methods is mathematically the
same as ξB

n computed via (3.14) using BiCG, results of their numerical evaluation may
substantially differ; see Section 7.

3.3. Estimating c∗A−1b via the Arnoldi algorithm. As with the non-Hermi-
tian Lanczos algorithm and the related BiCG, estimating c∗A−1b via the Arnoldi algo-
rithm uses (3.1) where An arises from the associated Vorobyev moment problem; see
Section 2.2. Taking u1 = c and v1 = b/‖b‖ and using (2.11), the approximation (3.1)
is in the Arnoldi algorithm given by

c∗A−1
n b = ‖b‖ t∗nH−1

n e1 ,

where tn ≡ V ∗
n c. We therefore denote

ξA

n ≡ ‖b‖ t∗nH−1
n e1 ,(3.22)

where the superscript “A” means “Arnoldi”. Note that the same formula can be
obtained using the quadrature rules in [5, pp. 776–777].

The significance of ξA

n (in comparison with ξB

n) is in the fact that An associated
with the Arnoldi algorithm is based on orthogonal projections; see Section 2.2. More-
over, although the Arnoldi algorithm matches less moments than the non-Hermitian
Lanczos algorithm, it is worth to note that Hn in (3.22) contains n(n+ 1)/2 + n− 1

On efficient numerical approximation of c∗A−1b 9

generally nonzero elements while Tn in (3.17) only 3n− 2 generally nonzero elements.
The upper Hessenberg matrix Hn may contain more information about the original
model represented by A, b and c than the tridiagonal matrix Tn. Since

xn = A−1
n b = ‖b‖VnH−1

n e1(3.23)

represents the approximate solution of Ax = b in the full orthogonalization method
(FOM) (see [41, pp. 159–160]) we can write

ξA

n = c∗xn ,(3.24)

where xn is computed by FOM.

In the HPD case and CG the approximate solution xn is computed using short
recurrences. In finite precision arithmetic computations, short recurrences typically
lead to a fast loss of orthogonality due to rounding errors, and, consequently, to delay

of convergence. Similar behavior can be expected with non-Hermitian Lanczos, BiCG
and hybrid BiCG methods due to loss of biorthogonality. Since the Arnoldi algorithm
uses long recurrences, the orthogonality among the computed basis vectors is lost
in finite precision arithmetic computations only gradually (details of rounding error
analysis can be found in [36] and in the earlier literature referenced there). Therefore,
unlike in BiCG or in the hybrid BiCG methods, (see (3.8) and (3.19)), in FOM the
formula (3.24) can be used in practical computations without delay of convergence
due to rounding errors.

4. Transformation to the Hermitian positive definite case. Numerical
approximations of the bilinear form c∗A−1b presented in Section 3 used non-Hermitian
Krylov subspace methods applied to the nonsingular complex matrix A. Here we write
the bilinear form as

c∗A−1b = c∗A∗(AA∗)−1b = c∗(A∗A)−1A∗b ,(4.1)

which suggests deriving its approximation by defining c̃ = Ac and approximating
c̃∗(AA∗)−1b. A second possibility is to approximate c∗(A∗A)−1b̃, where b̃ = A∗b. In
either case, the problem of interest is to approximate u∗B−1v where B is Hermitian
and positive definite; see also [17, Section 3.2]. For simplicity we consider only the
second choice.

4.1. Using the polarization identity. If B is real, symmetric and positive
definite, it was suggested in [17, pp. 16 and 33] and [21, p. 242] that a polarization
identity can be used to approximate u∗B−1v, where u 6= v. On a complex Hilbert
space with the inner product 〈·, ·〉, conjugate linear in the second variable, the polar-
ization identity takes the form (see e.g. [32], [57, p. 23])

2〈v, u〉 = (‖v + u‖2 − ‖v − u‖2 + i‖v + iu‖2 − i‖v − iu‖2)/2
= ‖v + u‖2 − (1 + i)(‖v‖2 + ‖u‖2) + i‖v + iu‖2 .(4.2)

Defining 〈v, u〉 ≡ u∗B−1v, the term ‖u‖2 in (4.2) is given by u∗B−1u. With v = A∗b
and B = A∗A, it follows that v∗B−1v = b∗b. The remaining three terms that need to
be approximated are

(v + u)∗B−1(v + u) , (v + iu)∗B−1(v + iu) and u∗B−1u(4.3)

10 Z. Strakoš and P. Tichý

all of which have the form w∗B−1w with the HPD matrix B. Then BiCG reduces to
the standard CG, with (3.13) giving

w∗B−1w = ξCG

n + r∗nB
−1rn , ξCG

n ≡
n−1
∑

j=0

αj‖rj‖2 ;(4.4)

see [52, relation (3.8)]. Since B = A∗A, the quantities αj , ‖rj‖2 and thus ξCG

n can con-
veniently be computed without forming the matrix B using the algorithms CGNR; see
[29, Section 10] where “NR” comes from Normal Equation Residual [22, Section 10.4].
As an alternative one can consider the HPD analogy of (3.10) with b = c = w and Tn
resulting from the n steps of the Hermitian Lanczos algorithm applied to the matrix
B = A∗A with the starting vector b. This gives

w∗B−1w = ‖b‖∗(T−1
n)1,1 + r∗nB

−1rn,(4.5)

where rn is as in (4.4). Numerically this can be efficiently computed via the algo-
rithm LSQR proposed by Paige and Saunders [38, 37] which uses the Golub-Kahan
bidiagonalization [14] and computes the Cholesky factor of Tn.

The approximation error r∗nB
−1rn in (4.4)–(4.5) is equal to the squared energy

norm of the error in CG and therefore it is monotonically decreasing with n. This
represents a significant difference in comparison with (3.13), where the error term
s∗nA

−1rn typically oscillates. There are methods for computing the upper and lower
bounds for w∗B−1w; see [17, 21, 18, 6]. Consequently, using (4.2), one can compute
(assuming exact arithmetic) upper and lower bounds for the real and imaginary parts
of the bilinear form c∗A−1b. Moreover (4.4) holds, up to a small error, also for quanti-
ties computed in finite precision arithmetic; see [52]. (It is worth to point out that ξCG

n

computed in finite precision arithmetic can be much larger than its exact arithmetic
counterpart computed at the same step.) The price of transforming the non-Hermitian
problem to the Hermitian one using the polarization identity (4.2) is, however, sub-
stantial. Approximation of three terms (4.3) requires three CG computations with
the same matrix B and different initial vectors, with total six matrix-vector multipli-
cations (three with A and three with A∗) per one iteration step. In our experiments,
the approach using the polarization identity (4.2) was not competitive with ξB

n.

4.2. Using the normal equations. Another way to approximate the bilinear
form c∗A−1b is to apply CGNR to A∗Ax = A∗b. The bilinear form can then be
approximated by c∗xn, where xn is the nth iterate of CGNR. Unlike in Section 4.1,
here only two matrix-vector products (one with A and one with A∗) are needed at
each iteration. As with (3.8) in Section 3.1, in finite precision arithmetic comput-
ing a sufficiently accurate approximation using c∗xn may be delayed due to loss of
orthogonality caused by rounding errors.

Rewriting the bilinear form using c∗(A∗A)−1A∗b as in (4.1), one can also consider
BiCG applied to B = A∗A with two different initial vectors u = A∗b and v = c; for
an analogous approach using the non-Hermitian Lanczos algorithm see [17, Sections
3.2 and 4.2]. BiCG applied to a system with the matrix B and two different initial
vectors needs four matrix-vector multiplications (two with A and two with A∗) per
iteration.

4.3. The GLSQR approach. Saunders et al. suggested in [42] the so called
Generalized LSQR method (GLSQR) which is applied to a matrix and two starting
vectors. It can be seen as the block-Lanczos algorithm applied to the matrix A∗A with

On efficient numerical approximation of c∗A−1b 11

the starting block [c, A∗b]; see also [39]. The GLSQR method solves simultaneously
the primal and dual systems (similarly to BiCG in Algorithm 1). The nth step is
associated with the following relations

AVn = UnTn + ζn+1un+1e
T
n ,

A∗Un = VnT
∗
n + θn+1vn+1e

T
n ,

where u1 = b/‖b‖, v1 = c/‖c‖, Vn = [v1, . . . , vn] and Un = [u1, . . . , un] are orthonor-
mal matrices, V ∗

n vn+1 = 0, U∗
nun+1 = 0, Tn is tridiagonal, and ζn+1 and θn+1 are the

normalization coefficients. Using GLSQR and applying the block Gauss quadrature
rule from [17, Sections 3.3 and 4.3], Golub, Stoll and Wathen derived the following
approximation to c∗A−1b

ξG

n = ‖b‖ ‖c‖ eT1 T−1
n e1,(4.6)

where the superscript “G” means GLSQR; see [20, Section 3.3]. The GLSQR approach
requires two matrix-vector multiplications (one by A and one by A∗) per iteration.

5. Preconditioning. Let PL and PR be nonsingular matrices such that the
systems of linear algebraic equations with the matrices PL and PR are easily solvable.
Clearly

c∗A−1b = (P−∗
R
c)∗(P−1

L
AP−1

R
)−1(P−1

L
b) = c∗A−1b,

where A ≡ P−1
L
AP−1

R
, c ≡ P−∗

R
c and b ≡ P−1

L
b. The approximation techniques

described above can be applied to the preconditioned problem c∗A−1b. Precondi-
tioning should lead to faster convergence. As a side effect, fast convergence can help
preventing significant delays due to rounding errors; see the illustrations in Section 7.
It is obvious that A−1 need not be formed explicitly.

6. Comments on numerical stability issues. A thorough numerical stabil-
ity analysis of the approaches for approximating the bilinear form c∗A−1b which are
presented in this paper is yet to be done. Here we concentrate on supporting argu-
ments for the claim that the new estimate ξB

n (see (3.14)) should be preferred to the
mathematically equivalent (and commonly used) scattering amplitude estimate c∗xn;
see (3.8).

Using A−1rn = x − xn, we rewrite for clarity of exposition the formulas which
express the errors of the computed approximation (see (3.13)–(3.16))

c∗A−1b = ξB

n + s∗n(x − xn) , ξB

n =

n−1
∑

j=0

αjs
∗
jrj ,(6.1)

c∗A−1b = c∗xn + c∗(x− xn)(6.2)

= c∗xn + s∗n(x− xn) + y∗n(b −Axn) .(6.3)

Mathematically (in exact arithmetic),

y∗n(b−Axn) = y∗nrn = g∗nWnrn = 0(6.4)

due to the global biorthogonality condition (3.6). Therefore

s∗n(x− xn) = c∗(x− xn) .(6.5)

12 Z. Strakoš and P. Tichý

In computations using finite precision arithmetic the global biorthogonality (3.6) is in
general lost, and, subsequently, (6.5) does not hold. Let the quantities computed using
finite precision arithmetic are denoted by “ ˆ ”. Supposing that the BiCG residual ŝn
for the dual problem A∗y = c is small, we may expect

|ŝ∗n(x− x̂n)| ≪ |c∗(x− x̂n)| .(6.6)

This corresponds to ξ̂B

n much closer to c∗A−1b than c∗x̂n. In other words, in finite
precision arithmetic computations the term ŷ∗n(b−Ax̂n) as well as a possible difference
between the true and iteratively computed residuals must be taken into account (for
the symmetric positive definite analogy see [52, Section 6]). Providing that the finite
precision analogies of (6.1) and (6.3) hold up to a small inaccuracy, the term ŷ∗n(b −
Ax̂n) would explain numerical behaviour of the estimate c∗x̂n.

Analogously to (3.15) one can easily derive for the computed approximations x̂n
and ŷn

c∗A−1b = c∗x̂n + (c−A∗ŷn)
∗(x− x̂n) + ŷ∗n(b−Ax̂n).

Therefore, (6.3) holds, up to small inaccuracy, also for results of finite precision compu-
tations, until the true residual b−Aŷn does not differ significantly from the iteratively
computed residual ŝn. For more details on the difference between the true and the
iteratively computed residuals see the analysis in [47, 26].

Concerning the finite precision analogy of (6.1), the situation is much more com-
plicated. Consider first A ∈ RN×N symmetric positive definite and c = b ∈ RN . Then
BiCG reduces to CG, rn = sn and (6.1) can be rewritten as

bTA−1b = ξCG

n + rTnA
−1rn , ξCG

n =

n−1
∑

j=0

αj ‖rj‖2 ,(6.7)

or, considering that rTnA
−1rn = (x− xn)

TA(x − xn), b
TA−1b = xTAx,

‖x‖2A = ξCG

n + ‖x− xn‖2A ,(6.8)

where the A-norm of a vector z is defined by ‖z‖A ≡ (z∗Az)1/2. It was proved in [52]
that (6.8) holds also for the results of finite precision arithmetic computations up to
a term proportional to ε‖x‖A‖x − x̂n‖A; here ε denotes machine precision unit (we
omit some tedious details). Consequently, until ‖x − x̂n‖A = (r̂TnA

−1r̂n)
1/2 becomes

close to ε‖x‖A, the computed ξ̂CG
n approximates bTA−1b = ‖x‖2A with the error of

the approximation being close to r̂TnA
−1r̂n = ‖x− x̂n‖2A; see [52, Theorem 10.1]. This

result is proved in several steps with two main ingredients. First, it is proved that
the iteratively computed residual r̂j (see Algorithm 1 with A = A∗ and s0 = r0 = b)
is sufficiently close to the residual b − Ax̂n computed directly from the approximate
solution x̂n. Second, it is proved that the local orthogonality between the residuals
and the search vectors p̂Tj r̂j+1 is preserved proportionally to machine precision ε;
see [52, Section 9].

For BiCG one can hardly expect results of the same strength. In particular, a
close preservation of the local biorthogonality conditions (3.12) can not be proved due
to the possible occurrence of the so called breakdowns, when q̂jAp̂j or ŝ∗j r̂j become
zero. Note that the breakdowns are not caused by rounding errors; they can occur in
exact arithmetic.

On efficient numerical approximation of c∗A−1b 13

Using the technique from [52, 53], one can express the inner product q̂∗j r̂j+1 of
the quantities computed in finite precision arithmetic using Algorithm 1 as

q̂∗j r̂j+1 =
ŝ∗j r̂j

ŝ∗j−1r̂j−1

q̂∗j−1r̂j + ε ϑj ,

and the size of ϑj can be bounded by the norms of the computed vectors, the norm
of A, and the size of the coefficient α̂j . By induction we obtain, after some algebraic
manipulations (cf. [52, p. 74] or [53, p. 805]),

q̂∗nr̂n+1 = ε ŝ∗nr̂n

n
∑

j=0

ϑj
ŝ∗j r̂j

+O(ε2) .(6.9)

Now we can clarify the differences between the CG case and the BiCG case.
In the CG case ŝj = r̂j and ŝ∗j r̂j = ‖r̂j‖2. As shown in [52], the size of ϑj

is bounded by κ(A) ‖r̂j‖2. In summary, the local biorthogonality is bounded by a
multiple of ε ‖r̂j‖2 κ(A); see [52, (9.14) and (9.15)]. In the BiCG case, q̂∗jAp̂j and
ŝ∗j r̂j can become zero due to breakdowns. In practice the exact breakdowns are very
rare, but near breakdowns can cause the corresponding terms in the sum (6.9) to be
large. If near breakdowns appear in BiCG, then preserving the local biorthogonality
condition (3.12) up to a small inaccuracy can not be guaranteed in finite precision
arithmetic computations. Therefore we were not able to prove that (6.1) holds, up
to a small inaccuracy, also in finite precision arithmetic computations. Nevertheless,
for ξB

n there is no need of preserving the global orthogonality conditions (3.6)–(3.7),
and, in particular, of y∗nrn = 0, as in the scattering amplitude approximations. This
represents a strong numerical argument in favour of the proposed estimate ξB

n.

7. Application and numerical experiments. We will illustrate the behaviour
of various approaches for approximation of the bilinear form c∗A−1b on several ex-
amples of different origin. In this section we omit for simplicity the “ ˆ ” notation for
the computed quantities.

7.1. Test problems. This paper was practically motivated by the problem of
diffraction of light on periodic structures and the RCWA method for its solution; see
the monograph [35] and the references given there. Application of the RCWA method
can lead to the system of linear algebraic equations, which for the simplest standard
2D model problem has the form (see [28, Section 3.5]),

Ax ≡

−I I ei
√
C̺ 0

YI
√
C −

√
Cei

√
C̺ 0

0 ei
√
C̺ I −I

0
√
Cei

√
C̺ −

√
C −YII

x = b ,(7.1)

where YI, YII are (2M + 1) × (2M + 1) complex diagonal matrices, C is a (2M +
1) × (2M + 1) complex Toeplitz plus diagonal matrix, ̺ is a given real and positive
parameter, and M is the discretization parameter representing the number of Fourier
modes used for approximation of the electric and magnetic fields as well as the material
properties. The block structure of (7.1) corresponds to the geometric structure of
the physical problem with one slab, where the individual block rows represent the
boundary conditions for the electric and magnetic fields on the interface between the
slab and the superstrate and the slab and the substrate. For the geometric structure

14 Z. Strakoš and P. Tichý

with S slabs the overall number of interfaces is S + 1, which gives 2(S + 1) block
equations (for (7.1) 2(1 + 1) = 4). In 3D problems the size of the individual blocks is
proportional to the square of the number the Fourier modes.

In real RCWA applications the blocks of the matrix A can not be formed by
evaluating the matrix functions. Considering time constraints given by technological
restrictions, that would be too slow. Moreover, one does not need the whole solution
of the linear algebraic system. For (7.1) one typically needs only the dominant (M +
1)st component (here eM+1 denotes the vector of the compatible dimension with the
(M + 1)st element equal to one and all other elements equal to zero)

e∗M+1A
−1b ;(7.2)

see [28, Section 3.5, relation (3.45)]. Therefore the problem seems to be well suited
for an iterative approximation of the bilinear form (1.1) with c = eM+1. In our
experiments we use M = 20, S = 1 and M = 20, S = 20, leading to the resulting
RCWA – motivated matrices:

• TE2001 (RCWA, 20 Fourier modes and 1 slab), the matrix A ∈ C164×164 is
complex nonsymmetric, κ(A) ≈ 112, starting vectors b and c arise from the
problem formulation;

• TE2020 (RCWA, 20 Fourier modes and 20 slabs), the matrix A ∈ C1722×1722

is complex nonsymmetric, κ(A) ≈ 2.9e + 03, starting vectors b and c arise
from the problem formulation.

In addition, we use in our illustrations four publicly available matrices from different
sources:

• young1c (ACOUST, HB Collection), the matrix A ∈ C841×841 is complex
symmetric, κ(A) ≈ 415;

• orsirr1 (OILGEN, HB Collection), the matrix A ∈ R1030×1030 is real non-
symmetric, κ(A) ≈ 7.7e+ 04;

• pde2961 (MATPDE, NEP Collection), the matrix A ∈ R
2961×2961 is real

nonsymmetric, κ(A) ≈ 642.5;
• af23560 (AIRFOI, NEP Collection), the matrix A ∈ R23560×23560 is real
nonsymmetric, the condition number estimate computed via the Matlab com-
mand condest(A) gives κ(A) ≈ 3.5e+ 05.

Except for TE2001 and TE2020 we choose b and c normalized random vectors.

7.2. An overview of compared methods and their implementations. In
this paper we presented three approaches for approximating the bilinear form c∗A−1b:
The non-Hermitian Lanczos approach, the Arnoldi approach and the approach based
on transformation to the HPD case. In our numerical experiments we use the standard
versions of BiCG [10], CGS [48], BiCGStab(4) [47], modified Gram-Schmidt Arnoldi
[41] and GLSQR [20]. For illustration of the behavior of BiCG in exact precision
arithmetic we run in some experiments BiCGreo with the rebiorthogonalized basis
vectors at each step (at step n, rn is reorthogonalized against the previously com-
puted s0, s1, . . . , sn−1, and sn is reorthogonalized against the previously computed
r0, r1, . . . , rn−1). We use a special version of the BiCGStab [54] algorithm with the
technique suggested in [46] (we choose the free parametr Ω = 0.7) to improve the
accuracy of the computed BiCG coefficients. We compare the approximations ξB

n

(see (3.14) and (3.20)) and c∗xn computed via BiCG, BiCGreo and the hybrid BiCG
methods, ξA

n (see (3.22)) computed via the Arnoldi algorithm and ξG

n (see (4.6)) com-
puted via GLSQR. We do not include in our experiments the approximation (3.10)

On efficient numerical approximation of c∗A−1b 15

50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

iteration number

TE2001

| ς − ξ
n
B |

| ς − ξ
n
B (reo) |

| ς − c* x
n
 |

|| x−x
n
 ||

| y
n
* r

n
 |

20 40 60 80 100 120 140 160 180 200
10

−15

10
−10

10
−5

10
0

iteration number

pde2961

| ς − ξ
n
B |

| ς − ξ
n
B (reo) |

| ς − c* x
n
 |

|| x−x
n
 ||

| y
n
* r

n
 |

100 200 300 400 500 600 700 800 900 1000
10

−15

10
−10

10
−5

10
0

iteration number

orsirr1

| ς − ξ
n
B |

| ς − ξ
n
B (reo) |

| ς − c* x
n
 |

|| x−x
n
 ||

| y
n
* r

n
 |

50 100 150 200 250 300 350
10

−15

10
−10

10
−5

10
0

iteration number

young1c

| ς − ξ
n
B |

| ς − ξ
n
B (reo) |

| ς − c* x
n
 |

|| x−x
n
 ||

| y
n
* r

n
 |

Fig. 7.1. Comparison of the errors |ς−ξBn | (bold solid line) and |ς−c∗xn| (bold dashed line) for
the mathematically equivalent approximations computed via BiCG. Both approximations are close
to each other until the size of |y∗nrn| (dash-dotted line) is negligible in comparison to the size of
|c∗xn|. To simulate the behavior of ξBn in exact arithmetic, we also plot |ς − ξBn (reo)| with ξBn (reo)
computed via BiCGreo (solid line).

computed via the non-Hermitian Lanczos algorithm. It gives very similar results as ξB

n

computed via BiCG. We also do not present results for the approximations introduced
in Section 4.1. On our set of problems they do not seem to be competitive with other
approximations; see the comment in Section 7.5.

Denote for simplicity of further presentation

ς(A, b, c) ≡ ς = c∗A−1b .

The value ς used for determining the approximation error in all subsequent experi-
ments was computed using the Matlab command c′(A\b).

7.3. Comparison of the approximations ξB

n and c∗xn. In Figure 7.1 we
compare the error |ς − ξB

n| of the new approximation ξB

n (see (3.14)) (bold solid line)
with the error |ς − c∗xn| of the scattering amplitude approximation c∗xn (see (3.8))
where xn is computed by Algorithm 1 (dashed line). In order to illustrate the effects of
rounding errors to the BiCG algorithm we plot also |ς−ξB

n (reo)| for ξB

n (reo) computed
via BiCGreo. The comparison is complemented by the upper bound ‖x − xn‖ ≥
|c∗(x − xn)| (here ‖c‖ = 1) and by the value |y∗nrn| (dash-dotted line) which in
finite precision arithmetic computations determines the difference between ξB

n and

16 Z. Strakoš and P. Tichý

20 40 60 80 100 120 140 160 180 200
10

−20

10
−15

10
−10

10
−5

10
0

10
5

iteration number

TE2001

Inaccuracy of (6.1)
Inaccuracy of (6.2)
Inaccuracy of (6.3)

|| W
n
* V

n
 − I ||

F

50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

10
5

iteration number

pde2961

Inaccuracy of (6.1)
Inaccuracy of (6.2)
Inaccuracy of (6.3)

|| W
n
* V

n
 − I ||

F

100 200 300 400 500 600
10

−20

10
−15

10
−10

10
−5

10
0

10
5

iteration number

orsirr1

Inaccuracy of (6.1)
Inaccuracy of (6.2)
Inaccuracy of (6.3)

|| W
n
* V

n
 − I ||

F

50 100 150 200 250 300 350
10

−20

10
−15

10
−10

10
−5

10
0

10
5

iteration number

young1c

Inaccuracy of (6.1)
Inaccuracy of (6.2)
Inaccuracy of (6.3)

|| W
n
* V

n
 − I ||

F

Fig. 7.2. Inaccuracy in the equations (6.1), (6.2) and (6.3) for the quantities computed in finite
precision arithmetic. For each equation we plot the absolute value of the difference of the terms on
the left and on the right hand side.

c∗xn; see (6.1) and (6.3). The dashed line coincides in all figures with the bold
solid line until the bold solid line is crossed by the dash-dotted line. It is interesting
that for the matrix pde2961 the approximations ξB

n (reo) and ξB

n almost coincide
except for the fact that ξB

n (reo) exhibits larger maximal attainable accuracy (that can
be attributed to additional accumulation of roundoff due to rebiorthogonalization).
All our experiments confirm that the newly proposed approximation ξB

n should be
preferred to computation of the scattering amplitude c∗xn.

Figure 7.2 shows the inaccuracy of the equations (6.1), (6.2) and (6.3) for the
quantities computed in finite precision arithmetic, as well as the loss of global biorthog-
onality in BiCG. While (6.1) and (6.3) are for all experiments using the matrices
TE2001, pde2961, orsirr1 and young1c satisfied up to the inaccuracy remarkably
close to machine precision, (6.2) is considerably violated due to the loss of biorthog-
onality.

7.4. BiCG and hybrid BiCG methods in approximation of c∗A−1b. As
explained in Section 3.2, ξB

n can be computed using hybrid BiCG methods. It is
however well known that computing the BiCG coefficients accurately may represent
in hybrid BiCG methods a problem. As stated in [46, p. 220], “In order to maintain
the convergence properties of the BiCG component in hybrid BiCG methods, it is

On efficient numerical approximation of c∗A−1b 17

100 200 300 400 500
10

−15

10
−10

10
−5

10
0

number of matrix−vector multiplications k

TE2001

| ς − ξ
k/2
B | BiCG

| ς − ξ
k/2
B | BiCGStab

| ς − ξ
k/2
B | CGS

| ς − ξ
k/8
B | BiCGStab (4)

50 100 150 200 250 300 350 400
10

−15

10
−10

10
−5

10
0

number of matrix−vector multiplications k

pde2961

| ς − ξ
k/2
B | BiCG

| ς − ξ
k/2
B | BiCGStab

| ς − ξ
k/2
B | CGS

| ς − ξ
k/8
B | BiCGStab (4)

200 400 600 800 1000 1200 1400 1600 1800 2000
10

−15

10
−10

10
−5

10
0

number of matrix−vector multiplications k

orsirr1

| ς − ξ
k/2
B | BiCG

| ς − ξ
k/2
B | BiCGStab

| ς − ξ
k/2
B | CGS

| ς − ξ
k/8
B | BiCGStab (4)

100 200 300 400 500 600 700 800
10

−15

10
−10

10
−5

10
0

number of matrix−vector multiplications k

young1c

| ς − ξ
k/2
B | BiCG

| ς − ξ
k/2
B | BiCGStab

| ς − ξ
k/2
B | CGS

| ς − ξ
k/8
B | BiCGStab (4)

Fig. 7.3. Comparison of errors |ς − ξB
k/2

| for the approximation ξB
k/2

computed via BiCG (bold

solid line), BiCGStab (dashed line), CGS (dotted line), and the error |ς−ξB
k/8

| of the approximation

ξB
k/8

computed via BiCGStab(4) (squares). The approximations obtained using the hybrid BiCG

methods are often significantly more affected by rounding errors than ξB
k/2

computed via BiCG.

Here k denotes the number of matrix-vector multiplications. For BiCG, BiCGStab and CGS we
have k = 2n (two matrix-vector multiplications per iteration). The value |ς − ξB

k/2
| is plotted every

second value of k. For BiCGStab(4) the value |ς − ξB
k/8

| is plotted every eights value of k.

necessary to select polynomial methods for the hybrid part that permit to compute
the BiCG coefficients as accurately as possible”. The difficulty in using hybrid BiCG
methods for approximating the bilinear form c∗A−1b is illustrated in Figure 7.3 for
BiCGStab, CGS and BiCGStab(4). On the x-axis is the number of matrix-vector
multiplications, that we denote by k. In all our computations we observed that for
the hybrid BiCG methods the computed value ξB

n (see (3.20)) was always very close to
the computed scattering amplitude c∗xn. This suggests that in hybrid BiCG methods
both quantities are affected by rounding errors in a similar way. We observe that none
of the hybrid BiCG methods perform in approximating the bilinear form c∗A−1b better
than ξB

n computed via BiCG. On the opposite, in most cases they perform significantly
worse. Techniques suggested in [46] applied to BiCGStab did not lead to a substantial
improvement of the computed BiCGStab approximations.

In order to get an insight into this observation, we plot (as an example) in the
upper part of Figure 7.4 the norm of the error ‖x − xn‖ (where x is determined via
the Matlab command A\b). Note that the approximations to the solution x lie for

18 Z. Strakoš and P. Tichý

100 200 300 400 500

10
−10

10
−5

10
0

10
5

number of matrix−vector multiplications k

TE2001

|| x−x
k/2

 || BiCG

|| x−x
k/2

 || BiCGStab

|| x−x
k/2

 || CGS

|| x−x
k/8

 || BiCGStab (4)

50 100 150 200 250 300 350 400

10
−10

10
−5

10
0

10
5

number of matrix−vector multiplications k

pde2961

|| x−x
k/2

 || BiCG

|| x−x
k/2

 || BiCGStab

|| x−x
k/2

 || CGS

|| x−x
k/8

 || BiCGStab (4)

200 400 600 800 1000 1200 1400 1600 1800 2000

10
−10

10
−5

10
0

10
5

number of matrix−vector multiplications k

orsirr1

|| x−x
k/2

 || BiCG

|| x−x
k/2

 || BiCGStab

|| x−x
k/2

 || CGS

|| x−x
k/8

 || BiCGStab (4)

100 200 300 400 500 600 700 800

10
−10

10
−5

10
0

10
5

number of matrix−vector multiplications k

young1c

|| x−x
k/2

 || BiCG

|| x−x
k/2

 || BiCGStab

|| x−x
k/2

 || CGS

|| x−x
k/8

 || BiCGStab (4)

Fig. 7.4. Euclidean norm of the error of the approximation to the solution of Ax = b computed
via BiCG and various hybrid BiCG methods. While BiCG seems to be a winner in approximating
the bilinear form c∗A−1b (see Figure 7.3), hybrid BiCG methods are often more efficient in solving
the system Ax = b.

various methods in Krylov subspaces of various dimensions. In particular, the BiCG
approximation xn lies in Kn(A, b), the CGS and BiCGStab approximations xn lie in
K2n(A, b) and the BiCGStab(4) approximation xn lies in K8n(A, b). For the matrix
TE2001 BiCG outperforms the other methods even in computing the approximate
solution to Ax = b, while for the matrix pde2961 it performs much worse than the
hybrid BiCG methods, with BiCGStab(4) the winner. For orsirr1 and young1c there
is no clear winner (a more detailed comparison of BiCG and hybrid BiCG methods
as linear algebraic solvers is out of the scope of this paper). Despite the fact that
‖x−xn‖ is for pde2961worst for the BiCG algorithm, the behaviour of |s∗n(x−xn)| still
causes ξB

n to behave even in this case about as well as the approximations computed
via the hybrid BiCG methods.

In conclusion, in our experiments (this paper gives a small sample of them) the
ξB

n computed via BiCG was not outperformed by the approximations computed via
the hybrid BiCG methods. In most examples ξB

n computed via BiCG performed
significantly better.

7.5. Transformation to the Hermitian positive definite case. From the
approaches described in Section 4, GLSQR performed in our experiments best both in
terms of iteration count and in the number of matrix-vector multiplications. However,

On efficient numerical approximation of c∗A−1b 19

20 40 60 80 100 120 140 160 180 200
10

−15

10
−10

10
−5

10
0

iteration number

TE2001

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

50 100 150 200
10

−15

10
−10

10
−5

10
0

iteration number

pde2961

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

100 200 300 400 500 600
10

−15

10
−10

10
−5

10
0

iteration number

orsirr1

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

50 100 150 200 250 300 350
10

−15

10
−10

10
−5

10
0

iteration number

young1c

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
A | Arnoldi

| ς − ξ
n
G | GLSQR

Fig. 7.5. Comparison of errors for different approaches: |ς − ξBn | (bold solid line) from Section
3.1 with ξBn computed via BiCG, |ς−ξBn(reo)| (solid line) with ξBn(reo) computed via BiCGreo, |ς−ξAn |
(dash-dotted line) with ξAn computed via the modified Gram-Schmidt Arnoldi algorithm from Section
3.3 and |ς − ξGn | (dots) with ξGn computed via GLSQR from Section 4.3.

even GLSQR was in most cases rather slow, as documented below. This observation
can not be explained by an effect of ill-conditioning of the matrix A∗A (in most of our
experiments we used matrices with a moderate condition number). Results of further
investigation of this topic will be reported elsewhere.

7.6. Comparison of approaches using different Krylov subspace meth-

ods. Figure 7.5 compares |ς − ξB

n| with ξB

n (see (3.14)) from Section 3.1 computed
via BiCG (bold solid line), |ς − ξB

n (reo)| with ξB

n (reo) computed via BiCGreo (solid
line), the error |ς− ξA

n | with ξA

n (see (3.24)) computed via the modified Gram-Schmidt
Arnoldi algorithm from Section 3.3 (dash-dotted line) and the error |ς − ξG

n | of the
GLSQR approximation ξG

n (see (4.6)) from Section 4.3 (dotted line).

We observe that the methods behave differently for different problems. Among the
methods using short recurrences, the newly proposed approximation ξB

n wins except
for TE2001 where ξG

n performs slightly better (ξB

n (reo) is not considered a practical
alternative). For other problems GLSQR approximation ξG

n performs rather poorly
(please notice the “double lines” for the problems pde2961 and young1c). The ap-
proximation ξA

n computed via the MGS Arnoldi algorithm converges faster than the
approximations based on short recurrences (except for young1c), but slower than
ξB

n (reo). We emphasize that the cost of the Arnoldi iteration increases with the iter-

20 Z. Strakoš and P. Tichý

2 4 6 8 10 12 14

10
−15

10
−10

10
−5

10
0

iteration number

TE2020

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
B | BiCGStab

| ς − ξ
n
A | Arnoldi

| ς − c*x
n
 | BiCG

5 10 15 20 25 30 35 40

10
−15

10
−10

10
−5

10
0

iteration number

af23560

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
B | BiCGStab

| ς − ξ
n
A | Arnoldi

| ς − c*x
n
 | BiCG

5 10 15 20 25 30 35 40 45 50

10
−15

10
−10

10
−5

10
0

iteration number

orsirr1

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
B | BiCGStab

| ς − ξ
n
A | Arnoldi

| ς − c*x
n
 | BiCG

5 10 15 20 25 30 35 40

10
−15

10
−10

10
−5

10
0

iteration number

young1c

| ς − ξ
n
B | BiCG

| ς − ξ
n
B | BiCGreo

| ς − ξ
n
B | BiCGStab

| ς − ξ
n
A | Arnoldi

| ς − c*x
n
 | BiCG

Fig. 7.6. Comparison of errors for various approaches with preconditioning. The error of
approximation computed via BiCG (bold solid line), BiCGStab (dashed line) and BiCGreo (solid
line) are for some problems very close to each other.

ation number n. The Arnoldi algorithm matches n moments, while the BiCG method
2n moments; see Sections 2.1, 2.2 and 3.1. Since the Arnoldi algorithm uses orthog-
onal projections while the BiCG method oblique projections, the smaller number of
the matched moments alone does not explain the observed behaviour. The cost of
computations can not be evaluated using matrix-vector products due to the fact that
the other costs are for methods based on short recurrences (BiCG and GLSQR) and
long recurrences (the Arnoldi algorithm) significantly different. In practical applica-
tions, the cost should be measured by computer time. At any case, our experiments
suggest that the newly proposed ξB

n is highly competitive.

7.7. Preconditioning. In practice, iterative methods can not be used without
efficient preconditioning. In Figure 7.6 we illustrate results of computations for the
same approaches as in Figure 7.5 except for GLSQR which was skipped due to un-
competitive performance. (This does not mean, however, that GLSQR is in general
uncompetitive. We were unable to make it work for our problems; the matter needs
further investigation.) For TE2020 we used a special preconditioning tailored to the
problem, for af23560 and young1c we used the incomplete Cholesky preconditioning
with the drop tolerance 5× 10−2 and 10−2 respectively (they were found experimen-
tally as good compromises between performance and fill-in). For the problem orsirr1

we used the incomplete Cholesky preconditioning with zero fill-in. We can observe

On efficient numerical approximation of c∗A−1b 21

that all approaches based on short recurrences, except for the scattering amplitude
approximation c∗xn computed via BiCG, are comparable (except for young1c they
are very close or almost coincide with ξB

n). They clearly outperform ξA

n in terms of it-
erations. If the number of iterations is small, the comparison on a real-world problem
with a significant cost of the matrix-vector multiplication might, however, be more
in favour of ξA

n computed via the Arnoldi algorithm. It is worth to point out that
due to long recurrences ξA

n can safely be computed via the FOM method using c∗xn;
see (3.24).

8. Concluding remarks. This paper proposes the new approximation ξB

n for
the bilinear form c∗A−1b and compares it to the existing approaches. We have linked
the presented approximations to the matching moment properties of the Krylov sub-
space methods. While the maximal number of moments matched at step n of the
Hermitian and non-Hermitian Lanczos algorithm and BiCG is 2n, the Arnoldi al-
gorithm matches at step n only n moments. Matching 2n moments using oblique
projections, however, does not necessarily mean an advantage over using the Arnoldi
algorithm with orthogonal projections (at the price of computing long recurrences)
and matching n moments only. In practice, the cost evaluation must take into ac-
count specifics of the given application problem which determine, e.g., the cost of the
matrix-vector products in relation to the cost of the iteration updates. Therefore the
choice of an optimal approach (including a choice of stopping criteria) is application-
dependent. Nevertheless, the newly proposed approximation ξB

n (see (3.14)) is, in our
opinion, highly competitive and it can be considered a good reference standard for
any other possible approach. The approximation error can be estimated using tech-
niques based on computing d additional iterations analogously to CG [52, Section 4];
see also [34, Section 5.3] and, in the context of constructing stopping criteria in nu-
merical solution of PDEs, e.g., [1, 31]. The approximation ξB

n clearly outperforms the
mathematically equivalent scattering amplitude approximation c∗xn. Scattering am-
plitude approximations computed via short recurrences rely upon preserving global
biorthogonality among the computed vectors. Their convergence is delayed due to
rounding errors much more than convergence of the approximation ξB

n, and therefore
they should not be used in practical computations.

Acknowledgement. The authors are indebted to Paul Van Dooren and Volker
Mehrmann for their useful comments and to Gerard Meurant for his valuable sug-
gestions. The presentation also benefits from the comments on the previous version
of the manuscript given by Karen Willcox, and by the very valuable comments of
three anonymous referees. The authors express their thanks to Margaret Wright for
extraordinary detailed comments and advice.

REFERENCES

[1] M. Arioli, A stopping criterion for the conjugate gradient algorithms in a finite element
method framework, Numer. Math., 97 (2004), pp. 1–24.

[2] Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems,
Appl. Numer. Math., 43 (2002), pp. 9–44. 19th Dundee Biennial Conference on Numerical
Analysis (2001).

[3] C. Brezinski, Projection Methods for Systems of Equations, vol. 7 of Studies in Computational
Mathematics, North-Holland Publishing Co., Amsterdam, 1997.

[4] A. Bultheel and M. Van Barel, Linear algebra, rational approximation and orthogonal
polynomials, vol. 6 of Studies in Computational Mathematics, North-Holland Publishing
Co., Amsterdam, 1997.

22 Z. Strakoš and P. Tichý

[5] D. Calvetti, S.-M. Kim, and L. Reichel, Quadrature rules based on the Arnoldi process,
SIAM J. Matrix Anal. Appl., 26 (2005), pp. 765–781 (electronic).

[6] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, Computable error bounds and esti-
mates for the conjugate gradient method, Numer. Algorithms, 25 (2000), pp. 75–88. Math-
ematical journey through analysis, matrix theory and scientific computation (Kent, OH,
1999).

[7] P. Chebyshev, Sur les fractions continues, (1855). Reprinted in Oeuvres I, 11 (Chelsea, New
York, 1962), pp. 204–229.

[8] G. Dahlquist, S. C. Eisenstat, and G. H. Golub, Bounds for the error of linear systems of
equations using the theory of moments, J. Math. Anal. Appl., 37 (1972), pp. 151–166.

[9] G. Dahlquist, G. H. Golub, and S. G. Nash, Bounds for the error in linear systems, in
Semi-infinite programming (Proc. Workshop, Bad Honnef, 1978), vol. 15 of Lecture Notes
in Control and Information Sci., Springer, Berlin, 1979, pp. 154–172.

[10] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical analysis (Proc
6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975), Springer, Berlin, 1976, pp. 73–
89. Lecture Notes in Math., Vol. 506.

[11] R. W. Freund, Model reduction methods based on Krylov subspaces, Acta Numer., 12 (2003),
pp. 267–319.

[12] R. W. Freund and M. Hochbruck, Gauss quadratures associated with the Arnoldi process
and the Lanczos algorithm, in Linear algebra for large scale and real-time applications,
M. S. Moonen, G. H. Golub, and B. L. R. De Moor, eds., vol. 232 of NATO Advanced
Science Institutes Series E: Applied Sciences, Dordrecht, 1993, Kluwer Academic Publishers
Group, pp. 377–380.

[13] K. Gallivan, E. Grimme, and P. Van Dooren, Asymptotic waveform evaluation via a Lanc-
zos method, Appl. Math. Lett., 7 (1994), pp. 75–80.

[14] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J.
Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205–224.

[15] G. H. Golub, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318–334.
[16] , Milestones in Matrix Computation: Selected Works of Gene H. Golub, with Commen-

taries, Oxford Science Publications, Oxford University Press, Oxford, 2007. Edited by
Raymond H. Chan, Chen Greif and Dianne P. O’Leary.

[17] G. H. Golub and G. Meurant, Matrices, moments and quadrature, in Numerical analysis
1993 (Dundee, 1993), vol. 303 of Pitman Res. Notes Math. Ser., Longman Sci. Tech.,
Harlow, 1994, pp. 105–156.

[18] G. H. Golub and G. Meurant, Matrices, moments and quadrature. II. How to compute the
norm of the error in iterative methods, BIT, 37 (1997), pp. 687–705. Direct methods,
linear algebra in optimization, iterative methods (Toulouse, 1995/1996).

[19] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature With Applications,
Princeton University Press, USA, 2010.

[20] G. H. Golub, M. Stoll, and A. Wathen, Approximation of the scattering amplitude and
linear systems, Electron. Trans. Numer. Anal., 31 (2008), pp. 178–203.

[21] G. H. Golub and Z. Strakoš, Estimates in quadratic formulas, Numer. Algorithms, 8 (1994),
pp. 241–268.

[22] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, third ed., 1996.

[23] R. G. Gordon, Error bounds in equilibrium statistical mechanics, J. Math. Physics, 9 (1968),
pp. 655–663.

[24] W. B. Gragg, Matrix interpretations and applications of the continued fraction algorithm, in
Proceedings of the International Conference on Padé Approximants, Continued Fractions
and Related Topics (Univ. Colorado, Boulder, Colo., 1972; dedicated to the memory of H.
S. Wall), vol. 4, 1974, pp. 213–225.

[25] A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences,
Linear Algebra Appl., 113 (1989), pp. 7–63.

[26] A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 535–551.

[27] M. H. Gutknecht, Variants of BICGSTAB for matrices with complex spectrum, SIAM J. Sci.
Comput., 14 (1993), pp. 1020–1033.

[28] J. J. Hench and Z. Strakoš, The RCWA method—a case study with open questions and
perspectives of algebraic computations, Electron. Trans. Numer. Anal., 31 (2008), pp. 331–
357.

[29] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436 (1953).

On efficient numerical approximation of c∗A−1b 23

[30] K. Hoffman and R. Kunze, Linear algebra, Second edition, Prentice-Hall Inc., Englewood
Cliffs, N.J., 1971.

[31] P. Jiránek, Z. Strakoš, and M. Vohraĺık, A posteriori error estimates including algebraic
error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32 (2010), pp. 1567–
1590.

[32] P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math.
(2), 36 (1935), pp. 719–723.

[33] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Research Nat.
Bur. Standards, 49 (1952), pp. 33–53.

[34] G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms in finite pre-
cision arithmetic, Acta Numer., 15 (2006), pp. 471–542.

[35] M. Neviere and E. Popov, Light Propagation in Periodic Media, Marcel Dekker Ltd., New
York, 2002.

[36] C. C. Paige, M. Rozložńık, and Z. Strakoš, Modified Gram-Schmidt (MGS), least squares,
and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 264–
284 (electronic).

[37] C. C. Paige and M. A. Saunders, Algorithm 583: LSQR: an algorithm for sparse linear
equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 195–201.

[38] , LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans.
Math. Software, 8 (1982), pp. 43–71.

[39] L. Reichel and Q. Ye, A generalized LSQR algorithm, Numer. Linear Algebra Appl., 15
(2008), pp. 643–660.

[40] W. P. Reinhardt, l2 discretization of atomic and molecular electronic continua: Moment,
quadrature and j-matrix techniques, Comp. Phys. Comm., 17 (1979), pp. 1–21.

[41] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, second ed., 2003.

[42] M. A. Saunders, H. D. Simon, and E. L. Yip, Two conjugate-gradient-type methods for
unsymmetric linear equations, SIAM J. Numer. Anal., 25 (1988), pp. 927–940.

[43] P. E. Saylor and D. C. Smolarski, Addendum to: “Why Gaussian quadrature in the complex
plane?” [Numer. Algorithms 26 (2001), no. 3, 251–280], Numer. Algorithms, 27 (2001),
pp. 215–217.

[44] , Why Gaussian quadrature in the complex plane?, Numer. Algorithms, 26 (2001),
pp. 251–280.

[45] L. Schlessinger and C. Schwartz, Analyticity as a useful computational tool, Phys. Rev.
Lett., 16 (1966), pp. 1173–1174.

[46] G. L. G. Sleijpen and H. A. van der Vorst, Maintaining convergence properties of BiCGstab
methods in finite precision arithmetic, Numer. Algorithms, 10 (1995), pp. 203–223.

[47] G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema, BiCGstab(l) and other hybrid
Bi-CG methods, Numer. Algorithms, 7 (1994), pp. 75–109.

[48] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Statist. Comput., 10 (1989), pp. 36–52.

[49] T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math.
Sci. Phys., 8 (1894), pp. J. 1–122. Reprinted in Oeuvres II (P. Noordhoff, Groningen,
1918), pp. 402–566. English translation Investigations on continued fractions in Thomas
Jan Stieltjes, Collected Papers, Vol. II (Springer-Verlag, Berlin, 1993), pp. 609–745.

[50] M. Stoll, Solving linear systems using the adjoint, PhD thesis, University of Oxford, Oxford,
UK, 2009.

[51] Z. Strakoš, Model reduction using the Vorobyev moment problem, Numer. Algorithms, 51
(2009), pp. 363–379.

[52] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why it
works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–
80.

[53] , Error estimation in preconditioned conjugate gradients, BIT, 45 (2005), pp. 789–817.
[54] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for

the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[55] Y. V. Vorobyev, Methods of moments in applied mathematics, Translated from the Russian
by Bernard Seckler, Gordon and Breach Science Publishers, New York, 1965.

[56] K. F. Warnick and W. C. Chew, Numerical simulation methods for rough surface scattering,
Waves Random Media, 11 (2001), pp. R1–R30.

[57] N. Young, An introduction to Hilbert space, Cambridge Mathematical Textbooks, Cambridge
University Press, Cambridge, 1988.

