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Abstract. The worst-case residual norms of the GMRES method for linear algebraic systems [3]
can, in case of a normal matrix, be characterized by a min-max approximation problem on the matrix
eigenvalues. In [2] we derive a lower bound on this min-max value (worst-case residual norm) for
each step of the GMRES iteration. We conjecture that the lower bound and the min-max value agree
up to a factor of 4/π, i.e. that the lower bound multiplied by 4/π represents an upper bound. In
this paper we prove for several different iteration steps that our conjecture is true for a special set of
eigenvalues, namely the roots of unity. This case is of interest, since numerical experiments indicate
that the ratio of the min-max value and our lower bound is maximal when the eigenvalues are the
roots of unity.
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1. Introduction. In our paper [2] we study the worst-case residual norm of the
GMRES method [3] for normal matrices. In iteration step i = 1, . . . , n− 1, this norm
is given by the min-max value

ML

i ≡ min
p∈πi

max
λj∈L

|p(λj)| , (1.1)

where

L = {λ1, . . . , λn}
denotes the set of the n (distinct) matrix eigenvalues, and πi denotes the set of
polynomials of degree at most i and with value one at the origin.

For i = n − 1, the min-max value ML
i can be determined as described in [2,

Theorem 3.1],

ML

n−1 =




n∑

j=1

|lj(0)|


−1

, (1.2)

where lj(λ), j = 1, . . . , n, denotes the jth Lagrange polynomial,

lj(λ) ≡
n∏

k=1
k 6=j

λk − λ

λk − λj
. (1.3)

In particular,

ML

n−1 =




n∑

j=1

n∏
k=1
k 6=j

|λk|
|λk − λj |




−1

. (1.4)
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2 JÖRG LIESEN AND PETR TICHÝ

For i < n−1, there exist neither a general solution for the min-max problem, nor
an explicit formula for the value ML

i in terms of the eigenvalues of A. Still, we may
try to estimate ML

i (from below, since it already describes a “worst” case) by an easily
comprehensible expression involving the eigenvalues. It is clear that the inequality

ML

i ≥ MS

i (1.5)

holds for every subset S of L. When the subset S contains exactly i + 1 points, we
can express the value MS

i as

MS

i =




i+1∑

j=1

|lS

j (0)|


−1

(1.6)

(see also [2]), where lS
j (λ), for j = 1, . . . , i + 1, denotes the jth Lagrange polynomial

corresponding to the elements of the set S. Based on (1.5) and (1.6), we receive the
following lower bound for ML

i ,

BL

i ≡ max
S⊆L

|S|=i+1

MS

i ≤ ML

i , i = 1, . . . , n− 1 . (1.7)

It is natural to ask about the closeness of the lower bound (1.7). Using a classical
result from approximation theory, see e.g. [1, Theorem 2.4 and Corollary 2.5], it can
be shown that (1.7) is an equality if all eigenvalues λj , j = 1, . . . , n, are real. But if at
least one eigenvalue is non-real, then (1.7) may be a sharp inequality. Nevertheless, our
numerical experiments with various (complex) eigenvalue distributions in [2, Section 4]
indicate that BL

i is very close to ML
i . In fact, we conjecture that

BL

i ≤ ML

i ≤ 4
π

BL

i , i = 1, . . . , n− 1 , (1.8)

holds for all sets L containing n distinct complex numbers. (Note that the conjecture
is trivial for i = n− 1; this case is included only for completeness.)

The purpose of this this paper is to discuss the inequality in (1.8) for a special
set of eigenvalues, namely the nth roots of unity. We give proofs that in this case the
inequality holds for i = 1, 2, n− 3, n− 2. We did not find a proof for all i yet, but
we suggest a possible approach for such a proof.

The case of the nth roots of unity seems to be very important for proving our
conjecture in general. A variety of numerical experiments we performed indicates that
the nth roots of unity represent the “worst” distribution in the sense that the ratio
ML

i /BL
i tends to be maximal on this set. In other words, we were unable to find a set

L containing n distinct complex numbers for which the ratio of the min-max value
ML

i and its lower estimate BL
i was larger than for the nth roots of unity.

The paper has 9 Sections. In Section 2 we give a precise definition of the problem
we intend to study. In Section 3 we give an alternative proof of the result from [4]
that ML

n−1 = 1 (for L = nth roots of unity) and derive an important formula that will
be used in the following sections. Sections 4–7 give proofs of the inequality in (1.8)
for L consisting of the nth roots of unity and the special cases i = n− 2, n− 3, 2, 1
(in this order, one case in each section). In Section 8 we suggest a way for proving
this inequality for every i. Finally, numerical experiments supporting our conjecture
are given in Section 9.
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2. Min-max problem on roots of unity. Consider the complex numbers

λk = ei 2kπ
n , k = 1, . . . , n , (2.1)

where i denotes the imaginary unit. These numbers are the well known nth roots of
unity, i.e. they are roots of the polynomial

zn − 1 . (2.2)

Denote the set of points (2.1) by L. In [4] it was shown that

ML

i = 1, i = 1, . . . , n− 1 ,

where ML
i is defined as in (1.1). In this paper we are interested in the value BL

i ,
which represents a lower bound on ML

i , cf. (1.7). We conjecture that BL
i is always

close to ML
i (i.e. close to one), and in particular that the inequality

BL

i = max
S⊆L

|S|=i+1




i+1∑

j=1

i+1∏
k=1
k 6=j

1
|λS

k − λS
j |




−1

≥ π

4
(2.3)

holds for every i < n. Here λS

k denotes the elements of the subset S ⊆ L.
To compute the value of BL

i it is desirable to express the distance between the
roots of unity in some convenient way. Note that the vectors determined by the
numbers ei 2jπ

n and ei 2kπ
n form the angle |j − k| 2π

n . It can be easily shown that

|ei 2jπ
n − ei 2kπ

n | = 2 sin

( |j − k|π
n

)
, (2.4)

see Fig. 2.1.
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Fig. 2.1. The distance between 2 roots of unity.

For every subset S ⊆ L, |S| = i + 1, there are indices m1, . . . , mi+1, 1 ≤ mj ≤ n,
such that

S = {λS

1 , . . . , λS

i+1} = {λm1 , . . . , λmi+1}.



4 JÖRG LIESEN AND PETR TICHÝ

Hence

lS

j (0) =


2i

i+1∏
k=1
k 6=j

sin

( |mj −mk|π
n

)



−1

, (2.5)

and BL
i can be written in the form

BL

i = 2i max
S⊆L

|S|=i+1




i+1∑

j=1




i+1∏
k=1
k 6=j

sin

( |mj −mk|π
n

)



−1


−1

. (2.6)

Using this formula we will in this paper prove the inequality (2.3) for i = 1, 2, n −
3, n− 2, and suggest a way for finding a general proof for all i.

3. Evaluation of ML
n−1. From [4] we know that ML

n−1 = 1. Here we give an
alternative proof of this relation. It can be easily seen by rotation that

n∏
k=1
k 6=1

|λ1 − λk| =
n∏

k=1
k 6=2

|λ2 − λk| = . . . =
n∏

k=1
k 6=n

|λn − λk| ,

and therefore

ML

n−1 =
1
n

n∏
k=1
k 6=n

|λn − λk| =
1
n

n−1∏

k=1

|1− λk| . (3.1)

Since the numbers λk, k = 1, . . . , n, are the nth roots of unity, i.e. the roots of the
polynomial zn − 1, and since λn = 1,

(z − 1)(zn−1 + · · ·+ z + 1) = zn − 1 =
n∏

k=1

(z − λk) = (z − 1)
n−1∏

k=1

(z − λk) .

We conclude that

n−1∑

k=1

zk + 1 =
n−1∏

k=1

(z − λk)

holds for each z ∈ C. For z = 1 we obtain

n =
n−1∏

k=1

(1− λk) . (3.2)

A comparison with (3.1) shows that ML
n−1 = 1. Using (2.4), the formula (3.2) can be

expressed as

n = 2n−1
n−1∏

j=1

sin

(
jπ

n

)
. (3.3)
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4. Proof of (2.3) for i = n − 2. Since all subsets S of L, |S| = n − 1, can be
obtained by rotation of the set L− {λn}, it holds

BL

n−2 = max
S⊆L

|S|=n−1

MS

n−2 = ML−{λn}
n−2 =




n−1∑

k=1

n−1∏
j=1
j 6=k

1
|λj − λk|




−1

.

The formula (2.6) gives

ML−{λn}
n−2 = 2n−2




n−1∑

k=1

n−1∏
j=1
j 6=k

1

sin
(

jπ
n

)




−1

= 2n−2




n−1∑
k=1

sin
(

kπ
n

)

n−1∏
j=1

sin
(

jπ
n

)




−1

.

Using (3.3) we obtain

ML−{λn}
n−2 =

[
2
n

n−1∑

k=1

sin

(
kπ

n

)]−1

=
π

2

[
π

n

n−1∑

k=1

sin

(
kπ

n

)]−1

. (4.1)

Note that the right hand side of (4.1) represents a lower bound for an integral, namely

π

n

n−1∑

k=1

sin

(
kπ

n

)
<

π∫

0

sin (x) dx = 2 , lim
n→∞

[
π

n

n−1∑

k=1

sin

(
kπ

n

)]
= 2 . (4.2)

Fig. 4.1 gives an illustration of this approximation.

Fig. 4.1. The approximation of the integral for n even (left part) and n odd (right part).

From (4.1) and (4.2) it follows that

BL

n−2 = ML−{λn}
n−2 >

π

4
, lim

n→∞
BL

n−2 =
π

4
.

This relation shows that (2.3) is sharp for i = n− 2. Hence the constant C = π/4 is
the smallest for which (2.3) may possibly hold for every i = 1, . . . , n− 1.

5. Proof of (2.3) for i = n − 3. The situation here is more complicated than
for i = n − 2 since the subsets S of L with |S| = n − 2 are not equivalent modulo
rotation. It suffices, however, to find one subset S of L with |S| = n−2, that satisfies
MS

n−3 ≥ π/4. We distinguish two cases, 1. n is even and 2. n is odd.

Case 1: n is even. Consider even n and define S ≡ L − {λ1, λn
2 +1} , see

Fig. 5.1. We shall compute the values lS
1 (0), . . . , lS

n−2(0). Since the set S is symmetric,
it holds

lS

j (0) = lS

j+ n−2
2

(0) , j = 1, . . . ,
n− 2

2
. (5.1)
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Fig. 5.1. The choice of n− 2 points when n is even.

Next, (lS
j (0))−1 is, according to (2.5), given by

(lS

j (0))−1 = 2n−3
n−2∏
k=1
k 6=j

sin

( |mj −mk|π
n

)
= 2n−3

n−1∏
k=1

k 6=j,k 6= n
2 +j

sin

(
k π

n

)
(5.2)

for j = 1, . . . , n−2
2 (cf. Fig. 5.1 for lS

1 (0)). From (1.6), (5.1) and (5.2) we obtain

(MS

n−3)−1 =
n−2∑

j=1

|lS

j (0)| = 2

n−2
2∑

j=1

|lS

j (0)|

=
2

2n−3

n−2
2∑

j=1

n−1∏
k=1

k 6=j,k 6= n
2 −j

1

sin
(

k π
n

)

=

n−2
2∑

j=1
sin

(
jπ
n

)
sin

(
π
2 − jπ

n

)

2n−4
n−1∏
k=1

sin
(

kπ
n

)

=
8
n

n−2
2∑

j=1

sin

(
jπ

n

)
sin

(
π

2
− jπ

n

)
.
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Using the formula sin(α) sin(β) = 1
2 [cos(α− β)− cos(α + β)], we receive

(MS

n−3)−1 =
8
n

n−2
2∑

j=1

1
2

[
cos

(
−π

2
+

2jπ

n

)
− cos

(π

2

)]

=
4
n

n−2
2∑

j=1

cos

(
π

2
− 2jπ

n

)

=
4
n

n−2
2∑

j=1

sin

(
2jπ

n

)

=
4
π


π

n

n−2
2∑

j=1

sin

(
2jπ

n

)
 .

Again, the last quantity on the right hand side approximates a sine integral from
below,

π

n

n−2
2∑

j=1

sin

(
2jπ

n

)
<

π
2∫

0

sin(x)dx = 1 ⇒ BL

n−3 ≥ MS

n−3 >
π

4
.

Fig. 5.2 gives an illustration of this approximation.

Fig. 5.2. The approximation of the sine integral when n is even and n mod 4 = 0 (left part:
n = 16) and n mod 4 = 2 (right part: n = 18).

Case 2: n is odd. For odd n we choose S = L−{λ1, λn+1
2 +1}, see Fig. 5.3, and

the inequality can be proven in a similar way as for even n,
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Fig. 5.3. The choice of n− 2 points when n is odd.

(MS

n−3)−1 =
1

2n−3

n−1
2∑

j=1

n−1∏
k=1

k 6=j,k 6= n+1
2 −j

1

sin
(

k π
n

) +
1

2n−3

n−1
2 −1∑

j=1

n−1∏
k=1

k 6=j,k 6= n−1
2 −j

1

sin
(

k π
n

)

=

n−1
2∑

j=1
sin

(
jπ
n

)
sin

(
π
2 − jπ

n + π
2n

)
+

n−1
2 −1∑
j=1

sin
(

jπ
n

)
sin

(
π
2 − jπ

n − π
2n

)

2n−3
n−1∏
k=1

sin
(

kπ
n

)

=
4
n

n−1
2∑

j=1

sin

(
jπ

n

)
sin

(
π

2
− jπ

n
+

π

2n

)

+
4
n

n−1
2 −1∑

j=1

sin

(
jπ

n

)
sin

(
π

2
− jπ

n
− π

2n

)

=
2
n

n−1
2∑

j=1

[
cos

(
−π

2
+

2jπ

n
− π

2n

)
− cos

(π

2
+

π

2n

)]

+
2
n

n−1
2 −1∑

j=1

[
cos

(
−π

2
+

2jπ

n
+

π

2n

)
− cos

(π

2
− π

2n

)]

=
2
n

n−1
2∑

j=1

cos

(
π

2
− 2jπ

n
+

π

2n

)
+

2
n

n−1
2 −1∑

j=1

cos

(
π

2
− 2jπ

n
− π

2n

)

− 2
n

cos
(π

2
+

π

2n

)

=
2
n




n−1
2∑

j=1

sin

(
2jπ

n
− π

2n

)
+

n−1
2 −1∑

j=1

sin

(
2jπ

n
+

π

2n

)
+ sin

( π

2n

)



=
2
n

n−2∑

j=0

sin

(
jπ

n
+

π

2n

)

=
2
π


π

n

n−1∑

j=1

sin

(
jπ

n
− π

2n

)
 .
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Since

π

n

n−1∑

j=1

sin

(
jπ

n
− π

2n

)
<

π∫

0

sin(x) dx = 2,

see Fig. 5.4, BL
n−3 > π/4 also holds for odd n.

Fig. 5.4. The approximation of the integral from sinus when n is odd.

6. Proof of (2.3) for i = 2 and n > 3. To show this, it suffices to find a subset
S ⊂ L, such that |S| = 3, and

MS

2 ≥ π

4

for every n > 3. (Note that everything is trivial for n = 3, and not defined for i = 2
and n < 3.) Consider a subset S,

S ≡ {λm1 , λm2 , λm3} ⊂ L ,

and denote angles between the pairs of vectors (λm1 , λm2), (λm2 , λm3), and (λm3 ,
λm1) by α1, α2, and α3, respectively (see Fig. 6.1 for an example). Then it can be
easily shown that

(MS

2 )−1 =
1

4 sin
(

α1
2

)
sin

(
α1+α2

2

) +
1

4 sin
(

α2
2

)
sin

(
α2+α3

2

) (6.1)

+
1

4 sin
(

α3
2

)
sin

(
α3+α1

2

) .

We are going to choose the three elements of S among the elements of L such that they
are “maximally” uniformly distributed. According to the value of n we distinguish 3
situations: 1. n mod 3 = 0, 2. n mod 3 = 1 and 3. n mod 3 = 2.

Case 1: n mod 3 = 0. In this case we can choose 3 of the given n points such
that they are uniformly distributed, e.g.

m1 = 1, m2 =
n

3
+ 1, m3 =

2n

3
+ 1.

The halfs of central angles are given by

α1

2
=

α2

2
=

α3

2
=

π

3

and from (3.3) and (6.1) it follows that 1 = MS
2 = BL

2 = ML
2 .

Case 2: n mod 3 = 1. Consider the subset S that contains points from L with
indices

m1 = 1, m2 =
n− 1

3
+ 1, m3 =

2n + 1
3

+ 1,



10 JÖRG LIESEN AND PETR TICHÝ
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Fig. 6.1. The choice of 3 points when n mod 3 = 1.

see Fig. 6.1 for n = 10. The halfs of central angles are given by

α1

2
=

n−1
3 π

n
=

π

3
− π

3n
,

α2

2
=

2n+1
3 π

n
− α1

2
=

π

3
+

2π

3n
,

α3

2
=

π

3
− π

3n

and, using (6.1),

(MS

2 )−1 =
1

4 sin
(

π
3 − π

3n

)
sin

(
2π
3 + π

3n

) +
1

4 sin
(

π
3 + 2π

3n

)
sin

(
2π
3 + π

3n

)

+
1

4 sin
(

π
3 − π

3n

)
sin

(
2π
3 − 2π

3n

)

=
1
2

cos
(

π
3 + 2π

3n

)
+ 1

+
1
2

cos
(

π
3 − π

3n

)− cos
(
π + π

n

)

+
1
2

cos
(

π
3 − π

3n

)− cos
(
π − π

n

)

=
1
2

cos
(

π
3 + 2π

3n

)
+ 1

+
1

cos
(

π
3 − π

3n

)
+ cos

(
π
n

) . (6.2)

Now realize that the first n with n > 3, and n mod 3 = 1, that comes into play is
n = 4. Therefore, for n > 3,

cos

(
π

3
+

2π

3n

)
≥ cos

(
π

3
+

2π

12

)
. (6.3)

Next

cos
(π

3
− π

3n

)
≥ cos

(π

3

)
. (6.4)

Using (6.2), (6.3) and (6.4), (MS
2 )−1 can be bounded as
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(MS

2 )−1 ≤
1
2

cos
(

π
3 + 2π

12

)
+ 1

+
1

cos
(

π
3

)
+ cos

(
π
5

) <
4
π

.

The last inequality was determined by computation.

Case 3: n mod 3 = 2. Consider the subset S that contains points from L with
indices

m1 = 1, m2 =
n + 1

3
+ 1, m3 =

2n− 1
3

+ 1,

see Fig. 6.2 for n = 11. The halfs of the central angles are given by
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Fig. 6.2. The choice of 3 points when n mod 3 = 2.

α1

2
=

n+1
3 π

n
=

π

3
+

π

3n
,

α2

2
=

2n−1
3 π

n
− α1

2
=

π

3
− 2π

3n
,

α3

2
=

π

3
+

π

3n

and, using (6.1),

(MS

2 )−1 =
1

4 sin
(

π
3 + π

n3

)
sin

(
2π
3 − π

3n

) +
1

4 sin
(

π
3 − 2π

n3

)
sin

(
2π
3 − π

3n

)

+
1

4 sin
(

π
3 + π

n3

)
sin

(
2π
3 + 2π

3n

)

=
1
2

cos
(

π
3 − 2π

3n

)
+ 1

+
1
2

cos
(

π
3 + π

3n

)− cos
(
π − π

n

)

+
1
2

cos
(

π
3 + π

3n

)− cos
(
π + π

n

)

=
1
2

cos
(

π
3 − 2π

3n

)
+ 1

+
1

cos
(

π
3 + π

3n

)
+ cos

(
π
n

)

≤
1
2

cos
(

π
3

)
+ 1

+
1

cos
(

π
3 + π

15

)
+ cos

(
π
5

) <
4
π

.
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We used the fact that the first n with n > 3, and n mod 3 = 2, that comes into
account is n = 5. The last inequality was determined by computation.

Summarizing, for all n > 3 we have shown that there is a set S ⊂ L such

π

4
≤ MS

2 ≤ BL

2 .

7. Proof of (2.3) for i = 1 and n > 2. It suffices to find a subset S ⊂ L,

S ≡ {λm1 , λm2}

such that

MS

1 ≥ π

4
.

Denote the central angle that form the vectors given by λm1 and λm2 as α1. Then it
can be easily shown that

MS

1 =

(
2

1

2 sin
(

α1
2

)
)−1

= sin
(α1

2

)
. (7.1)

As above we are going to choose the two points such that they are “maximally”
uniformly distributed.

If n is even, we can find a set S of two uniformly distributed points such that
MS

1 = 1, which proves our assertion.
For odd n we choose the indices m1 and m2 as

m1 = 1, m2 =
n + 1

2
+ 1,

see Fig. 7.1.

λ
1

λ
2

λ
3

λ
4

λ
5α

1
 

Fig. 7.1. The choice of 2 points for odd n, n = 5.
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Then

α1

2
=

n+1
2 π

n
=

π

2
+

π

2n
,

and, using (7.1),

MS

1 = sin
(π

2
+

π

2n

)
.

Now realize that the first odd n with n > 2 that comes into account is n = 3.
Therefore,

MS

1 = sin
(π

2
+

π

2n

)
≥ sin

(π

2
+

π

6

)
= sin

(π

3

)
=

√
3

2
>

π

4
. (7.2)

Summarizing, for all n > 2 there is a set S such that

π

4
< MS

1 ≤ BL

1 .

8. General approach for proving (2.3). A general proof of (2.3) for the nth
roots of unity and all i = 1, . . . , n− 1 might be based on the following approach: Let
n and i < n be given. We look for a subset set S ⊆ L, |S| = i + 1 such that

MS

i ≥ π

4
. (8.1)

Choose i + 1 points from L such that they are “maximally” uniformly distributed.
One possibility for such a set S is the one that contains points from L with indices

mj = round

(
(j − 1) n

i + 1

)
+ 1, j = 1, . . . , i + 1 . (8.2)

For every i one may then try to prove the inequality

(MS

i )−1 = 2−i
i+1∑

j=1




i+1∏
k=1
k 6=j

sin

( |mj −mk|π
n

)



−1

≤ 4
π

, (8.3)

as in previous sections. The numerical experiments in Section 9 clearly demonstrate
that the inequality (8.3) holds for the sets S with indices (8.2). Still, it is unclear how
to formally describe the proof of (8.3) using this idea.

Note that BL
i represents a certain functional defined on a subset of the roots of

unity. Our idea for a proof then is to find a subset that is “maximally” uniformly
distributed to maximize this functional. Inversely, a maximizer of the functional leads
to a distribution of points that may be called “maximally” uniformly distributed
with respect to the given functional. Similar problems have been studied in analytic
geometry, but we do not know an approach from this field that could be applied to
our specific problem.

9. Numerical experiments. For a given n and i < n, we define S, |S| = i + 1,
as a set of i + 1 points from L with indices mj computed according to (8.2). Using
(8.3) we compute the value MS

i and compare it with the constant π/4.
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Fig. 9.1 demonstrates clearly that the value MS
i (solid line) is always greater

than π/4 (dashed line). When n is a prime number (right part of the Fig. 9.1: n = 7,
n = 13, n = 73, n = 137), MS

i decreases monotonically to the value π/4. In other
cases (n = 8, n = 12, n = 64, n = 133 = 7 · 19) there always exist i ≥ 1 such that
n mod (i+ 1) = 0, i.e. there exist subsets S of L containing exactly the (i+ 1)st roots
of unity. In such cases we obtain

MS

i = 1,

which can be seen well in left part of the Fig. 9.1. Although MS
i = 1 for some i, the

curve of MS
i has decreasing tendency and approaches π/4 for i close to n.

Conclusions. Our numerical experiments support our conjecture that

ML

i ≤ 4
π

BL

i , i = 1, . . . , n− 1 , (9.1)

where L contains the nth roots of unity. We proved this inequality for i = 1, 2, n−
3, n − 2 (it is trivial for i = n − 1). We also showed that the constant 4/π is the
smallest possible one, since the inequality is sharp for i = n− 2. We believe that the
min-max problem on roots of unity is an extremal case for which the ratio of ML

i and
its lower approximation BL

i tends to be maximal. In other words, we expect (9.1) to
hold for any set of n distinct complex numbers L.
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Fig. 9.1. The value MS
i (solid line) is always greater than π/4 (dashed line).


