On the Forsythe conjecture

Petr Tichý

Charles University, Prague

joint work with Jörg Liesen, Vance Faber, and Gérard Meurant

December 15, 2022

Seminar in Numerical Mathematics, MFF UK, Prague

George E. Forsythe

Godfather of "Computer Science"

1917–1972

- National Bureau of Standards (1948), Standards Western Automatic Comp.
- Stanford University (1957), founded Computer science department (1965). He hired Gene H. Golub in 1962.
- "It is generally agreed that he, more than any other man, is responsible for the rapid development of computer science in the world's colleges and universities."

[Donald Knuth]

• 17 Ph.D., e.g. Beresford N. Parlett, Cleve B. Moler, James M. Varah, Richard P. Brent, J. Alan George.

Problem

Problem

 \boldsymbol{A} is symmetric and positive definite, \boldsymbol{b} given

Minimize

$$f(x) = \frac{1}{2}x^T A x - x^T b$$

using the steepest descent method

input A, b, x_0 for $k = 0, 1, 2, \dots$ do $g_k = Ax_k - b$ $x_{k+1} = x_k - \alpha_k g_k$ end for

Asymptotic behavior of normalized gradients?

Asymptotic behavior

Forsythe and Motzkin conjecture

• Consider the steepest descent method and denote

$$v_{k} \equiv rac{g_{k}}{\|g_{k}\|}$$

Note that $v_k \perp v_{k+1}$.

 [Forsythe & Motzkin, 1951] conjectured that vectors vk asymptotically alternate between two directions,

 $v_{2k} \to v$, $v_{2k+1} \to w$.

- [Akaike 1959]: Proof using methods from probability theory. [Forsythe 1968]: Algebraic proof and generalization.
- [Zou & Magoulés, 2022, SIREV]: Still of interest in optimization.

Problem

Forsythe 1968

Minimize

$$f(x) = \frac{1}{2}x^T A x - x^T b$$

using the *s*-gradient method:

input A, b, x_0 for $k = 0, 1, 2, \dots$ do $g_k = Ax_k - b$ $x_{k+1} = \operatorname*{arg\,min}_{y \in \mathcal{K}_s(A, g_k)} f(x_k + y)$ end for

This is nothing but restarted $CG \rightarrow CG(s)$.

Asymptotic behavior and the Forsythe conjecture

- Consider the CG(s) method applied to Ax = b, s > 1.
- Let x_0 be such that $d(A, g_0) > s$. Then

$$v_{k} \equiv \frac{g_{k}}{\|g_{k}\|}$$

are well defined.

Forsythe's conjecture

Vectors v_k asymptotically alternate between two directions,

 $v_{2k} \to v$, $v_{2k+1} \to w$.

• Observation: v_k are the Lanczos vectors and $v_k \perp v_{k+1}$.

Arnoldi projection of vwith respect to A and s

• $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$, and $s \ge 1$, we define $w \in \mathbb{R}^n$:

$$w \in \underbrace{A^s v + \mathcal{K}_s(A, v)}_{p(A)v}$$
 and $w \perp \mathcal{K}_s(A, v)$.

•
$$w \neq 0$$
 is unique if $d(A, v) > s$, denote

$$w = P_s(A; v) v.$$

- w can be computed using the Lanczos algorithm (if A is symmetric) or the Arnoldi algorithm.
- Note that $P_s(A; v)$ is independent of scaling of v.

A more general formulation

of the Forsythe conjecture via the Lanczos (Arnoldi) process

- $A \in \mathbb{R}^{n \times n}$ symmetric, $v \in \mathbb{R}^n$ with $d(A, v) > s \ge 1$
- Conjecture: Consider the algorithm

 $w_0 = v$ for k = 0, 1, 2, ... do $v_k = w_k / ||w_k||$ $w_{k+1} = P_s(A; v_k) v_k$ end for

Then the sequence $\{v_{2k}\}$ has a single limit vector.

• The vectors v_k are well defined.

Symmetric matrices

Norms of w_k

It holds that

 $\boldsymbol{w_{k+1}} = P_s(A; v_k) v_k$

and

$$||w_{k+1}|| = \min_{p \in \mathcal{M}_s} ||p(A)v_k|| \le \min_{p \in \mathcal{M}_s} ||p(A)||.$$

Theorem

It holds that

$$||w_k|| \leq ||w_{k+1}|| \quad k = 0, 1, 2, \dots$$

with equality iff $v_k = v_{k+2}$.

Consequence:

$$\| w_k \| \longrightarrow au$$
 as $k o \infty$.

Distance between v_{k+2} and v_k

$$1 - \frac{1}{2} \|v_{k+2} - v_k\|^2 = \langle v_{k+2}, v_k \rangle = \frac{1}{\|w_{k+2}\|} \langle w_{k+2}, v_k \rangle$$
$$= \frac{1}{\|w_{k+2}\|} \langle P_s(A; v_{k+1}) v_{k+1}, v_k \rangle$$
$$= \frac{1}{\|w_{k+2}\|} \langle v_{k+1}, P_s(A; v_{k+1}) v_k \rangle$$
$$= \frac{1}{\|w_{k+2}\|} \langle v_{k+1}, A^s v_k \rangle$$
$$= \frac{1}{\|w_{k+2}\|} \langle v_{k+1}, \underbrace{P_s(A; v_k) v_k}_{w_{k+1}} \rangle$$
$$= \frac{\|w_{k+1}\|}{\|w_{k+2}\|} \to 1$$

A short summary

 $A \in \mathbb{R}^{n \times n}$ symmetric, $v \in \mathbb{R}^n$ with $d(A, v) > s \ge 1$

 $w_0 = v$ for k = 0, 1, 2, ... do $v_k = w_k / ||w_k||$ $w_{k+1} = P_s(A; v_k) v_k$ end for

We know that

$$||w_k|| \leq ||w_{k+1}||, ||w_k|| \to \tau,$$

and

$$\|v_{k+2}-v_k\|\to 0.$$

Bolzano-Weierstraß \rightarrow { v_{2k} } has a convergent subsequence.

Example

• The property

$$\|v_{k+2} - v_k\| \to 0$$

is not sufficient for the existence of a single limit vector.

• Complex points

$$\mu_k = e^{\mathbf{i}\omega_k}, \qquad \omega_k = \sum_{j=1}^k \frac{\pi}{j}$$

satisfy $|\mu_k - \mu_{k+1}| \to 0$, but $\{\mu_k\}$ does not converge.

• It may be difficult to find a counterexample numerically.

The set of limit vectors

- Let Σ^A be the set of unit norm vectors such that d(A, v) > s.
- Define the transformation $T_A: \Sigma^A \to \Sigma^A$

$$v \mapsto T_A(v) \equiv \frac{P_s(A;v)v}{\|P_s(A;v)v\|}$$

so that

$$v_{k+2} = T_A(T_A(v_k)).$$

• $T_A \circ T_A : \Sigma^A \to \Sigma^A$ is well defined and **continuous**.

Theorem

The set Σ_*^A of limit vectors of the sequence $\{v_{2k}\}$ satisfies: (1) Σ_*^A is a **closed** and **connected** set in \mathbb{R}^n . (2) $\Sigma_*^A \subseteq \Sigma^A$, and each $v_* \in \Sigma_*^A$ satisfies $v_* = T_A(T_A(v_*))$.

Degree of limit vectors v_*

$A \in \mathbb{R}^{n \times n}$ symmetric, $v \in \mathbb{R}^n$ with $d(A, v) > s \ge 1$

$$w_0 = v$$

for $k = 0, 1, 2, \dots$ do
 $v_{k+1} = T_A(v_k)$
end for

Theorem

Each limit vector v_* of $\{v_{2k}\}$ satisfies

 $s < d(A, v_*) \leq 2s.$

Proof based on $v_* = T_A(T_A(v_*))$.

The case s = 1

Without loss of generality \boldsymbol{A} is diagonal

• \forall limit vector v_* of $\{v_{2k}\}$ we have $d(A, v_*) = 2$,

$$v_* = \alpha e_i + \beta e_j$$

for some canonical basis vectors e_i and e_j , $\alpha\beta \neq 0$, and

$$\tau = \left\| Av_* - \left(v_*^T A v_* \right) v_* \right\|$$

giving

$$\tau^{2} = \alpha^{2} \left(1 - \alpha^{2} \right) \left(\lambda_{i} - \lambda_{j} \right)^{2}. \tag{*}$$

- Finitely many combinations of distinct $i, j \in \{1, 2, ..., n\}$, for each such combination finitely many values of α satisfying (*).
- Σ^A_* is **connected** \Rightarrow there is just **one** limit vector.

The same approach

does not work for $\boldsymbol{s}=2$

• $\tau = \|P_s(A; v)v\|$ gives

$$\tau^{2} = v^{T} A^{4} v + \frac{\left(v^{T} A^{3} v\right)^{2} - \left(v^{T} A^{2} v\right)^{3}}{\left(v^{T} A v\right)^{2} - v^{T} A^{2} v}.$$

•
$$d(A, v_*) = 3$$
 or $d(A, v_*) = 4$:

$$v_* = \alpha e_i + \beta e_j + \gamma e_\ell$$

 $\alpha^2 + \beta^2 + \gamma^2 = 1.$

- One nonlinear equation with two degrees of freedom.
- Infinitely many solutions.

The case s = 2

$$||w_{k+1}|| v_{k+1} = w_{k+1} = P_s(A; v_k) v_k$$

so that

$$\underbrace{\|w_{k+1}\| \|w_{k+2}}_{\to \tau^2} \|v_{k+2} = \underbrace{P_s(A; v_{k+1}) P_s(A; v_k)}_{Q_{2s}(A; v_k)} v_k$$

and each limit vector v_* of $\{v_{2k}\}$ satisfies

$$\tau^2 v_* = Q_{2s}(A; v_*) v_* \,,$$

where v_* has either 3 or 4 nonzero components.

The case s = 2

and results of [Zhuk and Bondarenko, 1983]

 $\bullet~$ If v_* has 4 nonzero components with indexes i_1,\ldots,i_4 , then

$$\tau^2 = Q_{2s}(\lambda_{i_j}; v_*), \qquad j = 1, \dots, 4.$$

4 interpolation conditions $\rightarrow Q_{2s}$ is determined **uniquely**.

- If v_* has 3 nonzero components and if A is positive definite, then Q_{2s} is again **unique**. [Zhuk and Bondarenko, 1983]
- Finitely many combinations of sets of i_j ∈ {1, 2, ..., n} ⇒
 finitely many polynomials Q_{2s} that correspond to v_{*}'s.
- Quoting [Zabolotskaya, 1979] they use as a proven fact that the convergence of the coefficients of Q_{2s} implies the existence of a single limit vector v_* .
- We consider the case s = 2 to be still open.

Nonsymmetric matrices

Worst-case GMRES

and the cross equality

• For a given s, there exists a unit norm vector b such that

$$||r|| = \min_{p \in \pi_s} ||p(A)b|| = \max_{||v||=1} \min_{p \in \pi_s} ||p(A)v||.$$

Theorem

[Zavorin '02; Faber, Liesen, T. '13]

If b is a worst-case GMRES initial vector for A and s, then

$$b \xrightarrow{\operatorname{GMRES}(A, b, s)} r \xrightarrow{\operatorname{GMRES}(A^T, r, s)} ||r||^2 b.$$

• We say that b satisfies the cross equality for A and s if

$$b \xrightarrow{\text{GMRES}(A, b, s)} r \xrightarrow{\text{GMRES}(A^T, r, s)} z \in \text{span}\{b\}.$$

GMRES Cross iteration algorithm

and the Forsythe conjecture [Faber, Liesen, T., 2013]

Given A, s, and b, it seems that b_k converge to a vector satisfying the cross equality for A and s:

$$b_0 = b$$

for $k = 1, 2, ...$ do
 $r_k = \text{GMRES}(A, b_{k-1}, s)$
 $c_k = r_k / ||r_k||$
 $z_k = \text{GMRES}(A^T, c_k, s)$
 $b_k = z_k / ||z_k||$
end for

 $||r_k|| \leq ||z_k|| \leq ||r_{k+1}|| \leq ||z_{k+1}||$

The algorithm does **not** find a **worst-case** initial vector in general.

Arnoldi Cross iteration algorithm

and generalization of the Forsythe conjecture for nonsymmetric matrices

Given $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$ such that $d(A, v) > s \ge 1$

```
w_0 = v
for k = 0, 1, 2, ... do
v_k = w_k / ||w_k||
w_{k+1} = P_s(B; v_k) v_k
end for
```

where B = A (for k even), $B = A^T$ (for k odd).

Conjecture

The subsequence $\{v_{2k}\}$ has a single limit vector.

Results [Faber, Liesen, T., 2023] for nonsymmetric matrices

$$||w_k|| \le ||w_{k+1}||$$
 and $||v_{k+2} - v_k|| \to 0$.
 $T_A(v) \equiv \frac{P_s(A; v) v}{||P_s(A; v) v||}$

Theorem

The set Σ_*^A of limit vectors of the sequence $\{v_{2k}\}$ satisfies: (1) Σ_*^A is a closed and connected set in \mathbb{R}^n . (2) $\Sigma_*^A \subseteq \Sigma^A$, and each $v_* \in \Sigma_*^A$ satisfies $v_* = T_{A^T}(T_A(v_*))$.

It holds that $s \ < \ d(A, v_*)$, but it does not hold in general that

 $d(A, v_*) \leq 2s.$

Orthogonal matrices

Arnoldi Cross Iteration

for orthogonal matrices and $\boldsymbol{s}=\boldsymbol{1}$

Given $A \in \mathbb{R}^{n \times n}$ orthogonal, $v \in \mathbb{R}^n$ such that d(A, v) > s = 1

$$w_{0} = v$$

for $k = 0, 1, 2, ...$ do
$$v_{k} = w_{k} / ||w_{k}||$$
$$\alpha_{k} = v_{k}^{T} A v_{k}$$
$$w_{k+1} = (B - \alpha_{k} I) v_{k}$$
end for

where B = A (for k even), $B = A^T$ (for k odd).

$$||w_{k+1}||^2 = 1 - \alpha_k^2 \Rightarrow |\alpha_k| \ge |\alpha_{k+1}|.$$

Without loss of generality

 \boldsymbol{A} is block diagonal

 $A \in \mathbb{R}^{n \times n}$ can be orthogonally block-diagonalized $A = U \, G \, U^T$ with U orthogonal and

Convergence

for orthogonal matrices and $\boldsymbol{s}=\boldsymbol{1}$

For simplicity $A = \begin{bmatrix} G_1 & & \\ & G_2 & \\ & & \ddots & \\ & & & G_m \end{bmatrix}, \quad v_k = \begin{bmatrix} v_k^{(1)} \\ v_k^{(2)} \\ \vdots \\ v_k^{(m)} \end{bmatrix}, \quad v_k^{(j)} \in \mathbb{R}^2.$

Lemma

[Faber, Liesen, T., 2023]

Let $0 < c_1 < \cdots < c_m$ and d(A, v) > 1 and $v^{(1)} \neq 0$. For k sufficiently large there exists $0 < \rho < 1$ such that

$$\|v_{2k+2}^{(j)}\| \le \varrho \|v_{2k}^{(j)}\|, \quad j = 2, \dots, m,$$

and

$$\|v_{2k+2}^{(1)} - v_{2k}^{(1)}\| \le \varrho^k.$$

Convergence result

Orthogonal matrices, s = 1

Theorem

Let
$$0 < c_1 < \cdots < c_m$$
 and $d(A, v) > 1$ and $v^{(1)} \neq 0$.

Then the sequence $\{v_{2k}\}$ converges to a single limit vector.

Proof. Using the previous

$$\|v_{2k+2} - v_{2k}\|^2 = \sum_{j=1}^m \|v_{2k+2}^{(j)} - v_{2k}^{(j)}\|^2 \le 3 \varrho^{2k}$$

which implies

$$\sum_{k=0}^{\infty} \|v_{2k+2} - v_{2k}\| < \infty.$$

Connection to worst-case Arnoldi problem Orthogonal matrices, s = 1

$$\max_{\|v\|=1} \min_{\alpha \in \mathbb{R}} \|Av - \alpha v\|^2 = \max_{\|v\|=1} \|Av - \langle v, Av \rangle v\|^2$$
$$= 1 - \min_{\|v\|=1} \langle v, Av \rangle^2$$

and the optimal α_* is given by

$$\alpha_* = \min_{\|v\|=1} |\langle v, Av \rangle| = \min_{z \in F(A)} |z| = c_1.$$

We can prove that α_k in the Cross Iteration algorithm satisfy

$$\lim_{k \to \infty} \alpha_k = c_1 \, .$$

Hence, Cross Iteration algorithm finds a worst-case vector.

Conclusions

- We revised Forsythe's results and **generalized** them for symmetric and nonsymmetric matrices.
- Conjecture for symmetric and nonsymmetric matrices.
- For s = 1, we proved the existence of a single limit vector of the sequence $\{v_{2k}\}$ for symmetric and orthogonal matrices.
- We proved several new results about the limiting behavior of the sequence {v_{2k}}, but the conjecture still remains open.

Related papers

V. Faber, J. Liesen and P. Tichý, [On the Forsythe conjecture, submitted to SIMAX, 2022: https://arxiv.org/abs/2209.14579.]

- M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, [A generalization of the steepest descent method for matrix functions, Electron. Trans. Numer. Anal., 28 (2007/08), pp. 206-222.]
- V. Faber, J. Liesen and P. Tichý, [Properties of worst-case GMRES, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1500-1519.]
- G. E. Forsythe, [On the asymptotic directions of the s-dimensional optimum gradient method, Numer. Math., 11 (1968), pp. 57-76.]
- P. F. Zhuk and L. N. Bondarenko, [A conjecture of G. E. Forsythe, Mat. Sb. (N.S.), 121(163) (1983), pp. 435-453.]

Thank you for your attention!