Characterization of half-radial matrices

Petr Tichý

joint work with
Iveta Hnětynková
Charles University, Prague

MAT TRIAD 2019
Liblice, Czech Republic

Field of values (numerical range)
and numerical radius of $A \in \mathbb{C}^{n \times n}$

Numerical radius and the matrix 2-norm

It holds that

$$
r(A) \leq\|A\| \leq 2 r(A)
$$

- bounds attainable,
- $r(A)=\|A\| \longrightarrow$ radial matrices, well understood, several equivalent characterization [Horn, Johnson '94, Gustafson, Rao '97],
- $r(A)=\frac{1}{2}\|A\| \longrightarrow$ half-radial, sufficient conditions:
- $\mathcal{R}(A) \perp \mathcal{R}\left(A^{*}\right)$,
- $W(A)$ is a circular disk centered at origin with radius $\frac{1}{2}\|A\|$,
- A has a 2D reducing subspace on which it is the shift.
[Gustafson, Rao '97, Hogben '13]

Characterization of half-radial matrices

 using Θ_{A} set
Notation and assumptions

- Let $A \neq 0$ be square, $n \geq 2$. Denote $\langle A z, z\rangle \equiv z^{*} A z$.
- Consider unit norm vectors u, v such that $A v=\|A\| u$.
- Maximum right and left singular subspaces:

$$
\mathcal{V}_{\max }(A) \equiv\left\{v \in \mathbb{C}^{n}:\|A v\|=\|A\|\|v\|\right\}
$$

$\mathcal{U}_{\max }(A)$ analogously.

- Any vector $z \in \mathbb{C}^{n}$ can be uniquely decomposed,

$$
z=x+y, \quad x \in \mathcal{R}\left(A^{*}\right), y \in \mathcal{N}(A),
$$

$\mathcal{R}\left(A^{*}\right) \ldots$ range of $A^{*}, \mathcal{N}(A) \ldots$ null space of A.

Θ_{A} set of maximizers
 definition

$$
r(A)=\max _{\|z\|=1}|\langle A z, z\rangle|
$$

Define

$$
\Theta_{A} \equiv\left\{z \in \mathbb{C}^{n}:\|z\|=1, r(A)=|\langle A z, z\rangle|,\langle A x, x\rangle=0\right\}
$$

where

$$
z=x+y, \quad x \in \mathcal{R}\left(A^{*}\right), y \in \mathcal{N}(A)
$$

Theorem

$$
\|A\|=2 r(A) \Longleftrightarrow \Theta_{A} \neq\{\emptyset\}
$$

In particular, if $\mathcal{R}(A) \perp \mathcal{R}\left(A^{*}\right)$, then Θ_{A} is non-empty.

Maximum singular subspaces

and half-radial matrices
Assume without loss of generality that $\|A\|=1$.
Theorem
$\|A\|=2 r(A) \Longleftrightarrow \forall$ unit norm $v \in \mathcal{V}_{\text {max }}(A)$ it holds that

$$
v \in \mathcal{N}\left(A^{*}\right), \quad A v \in \mathcal{N}(A)
$$

and

$$
z=\frac{1}{\sqrt{2}}(v+A v) \quad \text { maximizes } \quad|\langle A z, z\rangle| .
$$

- $v \in \mathcal{R}\left(A^{*}\right), A v \in \mathcal{N}(A) \Rightarrow z \in \Theta_{A}$.
- $\|A\|=2 r(A) \Rightarrow \mathcal{V}_{\max }(A) \subseteq \mathcal{N}\left(A^{*}\right), \quad \mathcal{U}_{\max }(A) \subseteq \mathcal{N}(A)$.

$\mathcal{V}_{\max }(A) \subseteq \mathcal{N}\left(A^{*}\right), \quad \mathcal{U}_{\max }(A) \subseteq \mathcal{N}(A)$.

is not sufficient for A to be half-radial

Consider $A,\|A\|=1, \frac{1}{2}<\rho<1$,

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & \rho & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Obviously,

$$
\begin{aligned}
& \mathcal{V}_{\max }(A)=\operatorname{span}\left\{e_{1}\right\}=\mathcal{N}\left(A^{*}\right) \\
& \mathcal{U}_{\max }(A)=\operatorname{span}\left\{e_{3}\right\}=\mathcal{N}(A)
\end{aligned}
$$

but A is not half-radial,

$$
r(A) \geq\left|\left\langle A e_{2}, e_{2}\right\rangle\right|=\rho>\frac{1}{2}
$$

Structure of Θ_{A}

From the previous (assuming $\|A\|=1$)

$$
\Theta_{A} \neq\{\emptyset\} \Longleftrightarrow\|A\|=2 r(A) \Rightarrow z=\frac{1}{\sqrt{2}}(v+A v) \in \Theta_{A},
$$

where $v \in \mathcal{V}_{\text {max }}(A),\|v\|=1$.

Theorem
Θ_{A} is either empty or
$\Theta_{A}=\left\{\frac{1}{\sqrt{2}}\left(e^{i \alpha} v+e^{i \beta} A v\right): v \in \mathcal{V}_{\max }(A),\|v\|=1, \alpha, \beta \in \mathbb{R}\right\}$.

Algebraic structure of half-radial matrices

Algebraic structure of half-radial matrices

A generalization of result by [Gustafson, Rao '97]
Theorem
A is half-radial $\Longleftrightarrow A$ is unitarily similar to the matrix

$$
\left(I_{m} \otimes J\right) \oplus B=\left[\begin{array}{llll}
J & & & \\
& \ddots & & \\
& & J & \\
& & & B
\end{array}\right],
$$

where $m=\operatorname{dim} \mathcal{V}_{\max }(A)$,

$$
J=\|A\|\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

and B is a matrix satisfying $\|B\|<\|A\|, r(B) \leq \frac{1}{2}\|A\|$.

Half-radial matrices
 and Crouzeix's conjecture

Crouzeix's conjecture

" Where in the complex plane does a matrix live? " [Nick Trefethen]
Try to determine sets $\Omega \subset \mathbb{C}$ associated with A such that

$$
\|p(A)\| \sim\|p\|_{\Omega}=\max _{\zeta \in \Omega}|p(\zeta)|
$$

" When eigenvalues do not tell the whole story, the field of values may give more info. "
[Anne Greenbaum]
For any A and any polynomial p it holds that

$$
\|p(A)\| \leq c\|p\|_{W(A)}
$$

- conjecture $c=2$ [Crouzeix '04],
- proof $c=11.08$ [Crouzeix '07],
- proof $c=1+\sqrt{2}$ [Crouzeix, Palencia '17].

Crouzeix's inequality

holds in some cases

$$
\|p(A)\| \leq 2\|p\|_{W(A)}
$$

- if A is normal (2 can be improved to 1),
- $n=2$ [Crouzeix '04],
- $p(\zeta)=\zeta^{k}$ [Berger, Pearcy '66],
- if $W(A)$ is a disk [Badea '04, Okubo, Ando '75, von Neumann '51],

$$
A=\left[\begin{array}{cccc}
\lambda & \alpha_{1} & & \\
& \ddots & \ddots & \\
& & \ddots & \alpha_{n-1} \\
\alpha_{n} & & & \lambda
\end{array}\right]
$$

[Choi, Greenbaum '12], [Choi '13]

Crouzeix's inequality

and half-radial matrices

$$
\|p(A)\| \leq 2\|p\|_{W(A)}
$$

Lemma

Half-radial matrices satisfy Crouzeix's inequality. The bound is attained for $p(\zeta)=\zeta$.

Lemma

Let an integer $k \geq 1$ be given. It holds that

$$
\|p(A)\|=2\|p\|_{W(A)}
$$

for $p(\zeta)=\zeta^{k} \Longleftrightarrow A^{k}$ is half-radial and $r\left(A^{k}\right)=r(A)^{k}$.

Crouzeix's conjecture

Greenbaum and Overton numerical results

Crouzeix ratio

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|} \geq \frac{1}{2} ?
$$

[Greenbaum, Overton '18]

- Optimization problem \rightarrow properties,
- use BFGS method, Matlab and Chebfun,
- fix p or A or none,
- conjecture: $\frac{1}{2}$ can be attained only for ζ^{k},
- conjecture: only for the Crabb-Choi-Crouzeix matrix.

Crabb-Choi-Crouzeix matrix

Independently used by [Choi '13], [Crouzeix '15], [Crabb '71],

$$
C_{1}=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right], \quad C_{n}=\left[\begin{array}{cccccc}
0 & \sqrt{2} & & & & \\
& 0 & 1 & & & \\
& & 0 & \ddots & & \\
& & & 0 & 1 & \\
& & & & 0 & \sqrt{2} \\
& & & & & 0
\end{array}\right]
$$

C_{n}^{n} is half-radial and

$$
\left\|C_{n}^{n}\right\|=2 r\left(C_{n}^{n}\right), \quad r\left(C_{n}^{n}\right)=r\left(C_{n}\right)^{n}
$$

Crabb's theorem

Theorem

Let A be a bounded linear operator on a Hilbert space H, and let $v \in H,\|v\|=1$. Suppose that $r(A)=1$ and that $\left\|A^{k} v\right\|=2$ for some integer k. Then $A^{k+1} v=0,\left\|A^{i} v\right\|=\sqrt{2}$,
$i=1,2, \ldots, k-1$, the elements $v, A v, \ldots, A^{k} v$ are mutually orthogonal, and their linear span is a reducing subspace of A.
\Rightarrow
Lemma
[Hnětynková, T. '18]
Let $A \in \mathbb{C}^{(n+1) \times(n+1)}, r(A)=1$. It holds that

$$
\|p(A)\|=2\|p\|_{W(A)}
$$

for $p=\zeta^{n} \Longleftrightarrow A$ is unitarily similar to C_{n}.

Exclusivity of the Crabb-Choi-Crouzeix matrix

Theorem
[Hnětynková, T. '18]
Let $A \in \mathbb{C}^{(n+1) \times(n+1)}$. It holds that

$$
\|p(A)\|=2\|p\|_{W(A)}
$$

for $p=\zeta^{k}$ and $1 \leq k \leq n \Longleftrightarrow A$ is unitarily similar to

$$
r(A)\left[\begin{array}{ll}
C_{k} & \\
& B
\end{array}\right]
$$

where $r(B) \leq 1$ and $\left\|B^{k}\right\| \leq 2$.

Conjectures [Greenbaum, Overton '18]:

- $\frac{1}{2}$ can be attained only for ζ^{k} ?
- only for the Crabb-Choi-Crouzeix matrix \rightarrow yes.

Summary

$$
\|A\| \leq 2 r(A)
$$

- A is half-radial $\Longleftrightarrow \Theta_{A} \neq\{\emptyset\}$.
- Structure of the set Θ_{A},

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left(e^{i \alpha} v+e^{i \beta} A v\right) \\
\text { where } v \in \mathcal{V}_{\max }(A), v \in \mathcal{N}\left(A^{*}\right), A v \in \mathcal{N}(A)
\end{gathered}
$$

- Algebraic characterization of half-radial matrices.
- If the upper bound in Crouzeix's inequality

$$
\|p(A)\| \leq 2\|p\|_{W(A)}
$$

can be attained only for a monomial, then our theorem characterizes all matrices for which the bound is attained.

References

- M. Crouzeix and C. Palencia, [The numerical range is a $(1+\sqrt{2})$-spectral set, SIMAX 38 (2017), pp. 649-655]
- A. Greenbaum and M. L. Overton, [Numerical investigation of Crouzeix's conjecture, LAA 542 (2018), pp. 225-245]
- K. E. Gustafson, D. K. M. Rao, [Numerical range: The field of values of linear operators and matrices, Universitext, Springer-Verlag, New York, 1997]
- I. Hnětynková and P. Tichý, [Characterization of half-radial matrices, LAA 559 (2018), pp. 227-243]

Thank you for your attention!

