On solving linear systems arising from Shishkin mesh discretizations

Petr Tichý

Faculty of Mathematics and Physics, Charles University

joint work with
Carlos Echeverría, Jörg Liesen, and Daniel Szyld

October 20, 2016, Prague
Seminar of Numerical Mathematics, KNM MFF UK

Problem formulation

Convection-diffusion boundary value problem

$$
\begin{gathered}
-\epsilon u^{\prime \prime}+\alpha u^{\prime}+\beta u=f \quad \text { in } \quad \Omega=(0,1), \\
u(0)=u_{0}, \quad u(1)=u_{1}
\end{gathered}
$$

$\alpha>0, \beta \geq 0$ constants, the problem is convection dominated

$$
0<\epsilon \ll \alpha .
$$

[Stynes, 2005] (Acta Numerica)
[Roos, Stynes, and Tobiska, 1996, 2008] (book)
[Miller, O'Riordan, and Shishkin, 1996] (book)

Solution and boundary layers

$$
\epsilon=0.01, \alpha=1, \beta=0, u(0)=u(1)=0
$$

There are small subregions where the solution has a large gradient.

Numerical solution, equidistant mesh

Standard techniques:

$$
u^{\prime}(i h) \approx \frac{u_{i+1}-u_{i-1}}{2 h}, \quad u^{\prime}(i h) \approx \frac{u_{i}-u_{i-1}}{h}
$$

- Unnatural oscillations or cannot resolve the layers.
- Remedy: stabilization or non-equidistant mesh.
- We study discretizations for a Shishkin mesh.

Outline

(1) Shishkin mesh and discretization
(2) How to solve the linear system?
(3) Multiplicative Schwarz method

4 Convergence analysis
(5) Schwarz method as a preconditioner
(6) Numerical examples

Shishkin mesh on $[0,1]$

Piecewise equidistant

N even, define the transition point $1-\tau$ and n by

$$
\tau \equiv \min \left\{\frac{1}{2}, \frac{\epsilon}{\alpha} 2 \ln N\right\}, \quad n \equiv \frac{N}{2}
$$

If $\epsilon \ll \alpha$, then $1-\tau$ is close to 1 . Next define H and h by

$$
H \equiv \frac{1-\tau}{n}, \quad h \equiv \frac{\tau}{n}
$$

and consider the Shishkin mesh, $x_{0}=0$,

$$
x_{i} \equiv i H, \quad x_{n+i} \equiv x_{n}+i h, \quad i=1, \ldots, n .
$$

Discretization on the Shishkin mesh - details

For simplicity $u(0)=u(1)=0$
The upwind difference scheme is given by

$$
-\epsilon \delta_{x}^{2} u_{i}+\alpha D_{x}^{-} u_{i}+\beta u_{i}=f_{i}, \quad u_{0}=u_{N}=0
$$

and the central difference scheme by

$$
-\epsilon \delta_{x}^{2} u_{i}+\alpha D_{x}^{0}+\beta u_{i}=f_{i}, \quad u_{0}=u_{N}=0
$$

where

$$
\delta_{x}^{2} u_{i}=\frac{2 u_{i-1}}{(H+h) H}-\frac{2 u_{i}}{H h}+\frac{2 u_{i+1}}{(H+h) h}, \quad i=n
$$

and
$D_{x}^{-} u_{i}=\frac{u_{i}-u_{i-1}}{H}, \quad 1 \leq i \leq n, \quad D_{x}^{0} u_{i}=\frac{u_{i+1}-u_{i-1}}{h+H}, \quad i=n$.
surveys [Linss, Stynes, 2001], [Stynes, 2005], [Kopteva, O'Riordan, 2010]

Shishkin mesh and ϵ-uniform convergence

- The upwind difference scheme

$$
-\epsilon \delta_{x}^{2} u_{i}+\alpha D_{x}^{-} u_{i}+\beta u_{i}=f_{i}, \quad u_{0}=u_{N}=0
$$

There exists a constant C such that

$$
\left|u\left(x_{i}\right)-u_{i}\right| \leq C\left(\frac{\ln N}{N}\right), \quad i=0, \ldots, N
$$

see, e.g., [Stynes, 2005].

Shishkin mesh and ϵ-uniform convergence

- The upwind difference scheme

$$
-\epsilon \delta_{x}^{2} u_{i}+\alpha D_{x}^{-} u_{i}+\beta u_{i}=f_{i}, \quad u_{0}=u_{N}=0
$$

There exists a constant C such that

$$
\left|u\left(x_{i}\right)-u_{i}\right| \leq C\left(\frac{\ln N}{N}\right), \quad i=0, \ldots, N
$$

see, e.g., [Stynes, 2005].

- The central difference scheme

$$
-\epsilon \delta_{x}^{2} u_{i}+\alpha D_{x}^{0} u_{i}+\beta u_{i}=f_{i}, \quad u_{0}=u_{N}=0
$$

There exists a constant C such that

$$
\left|u\left(x_{i}\right)-u_{i}\right| \leq C\left(\frac{\ln N}{N}\right)^{2}, \quad i=0, \ldots, N
$$

[Andreev and Kopteva, 1996], a difficult proof, the scheme does not satisfy a discrete maximum principle. [Kopteva and Linss, 2001].

Outline

(1) Shishkin mesh and discretization

(2) How to solve the linear system?
(3) Multiplicative Schwarz method
(4) Convergence analysis
(5) Schwarz method as a preconditioner
(6) Numerical examples

Structure of the matrix

$$
A=\left[\begin{array}{cccc|cccc}
a_{H} & b_{H} & & & & & & \\
c_{H} & \ddots & \ddots & & & & & \\
& \ddots & \ddots & b_{H} & & & & \\
& & c_{H} & a_{H} & b_{H} & & & \\
& & & c & a & b & & \\
\hline & & & & c_{h} & a_{h} & b_{h} & \\
& & & & & c_{h} & \ddots & \ddots \\
& & & & & & \ddots & \ddots \\
& & & & & & & c_{h} \\
& & & a_{h}
\end{array}\right]
$$

Entries

The upwind scheme

$$
\begin{array}{lll}
c_{H}=-\frac{\epsilon}{H^{2}}-\frac{\alpha}{H}, & a_{H}=\frac{2 \epsilon}{H^{2}}+\frac{\alpha}{H}+\beta, & b_{H}=-\frac{\epsilon}{H^{2}}, \\
c=-\frac{2 \epsilon}{H(H+h)}-\frac{\alpha}{H}, & a=\frac{2 \epsilon}{h H}+\frac{\alpha}{H}+\beta, & b=-\frac{2 \epsilon}{h(H+h)}, \\
c_{h}=-\frac{\epsilon}{h^{2}}-\frac{\alpha}{h}, & a_{h}=\frac{2 \epsilon}{h^{2}}+\frac{\alpha}{h}+\beta, & b_{h}=-\frac{\epsilon}{h^{2}} .
\end{array}
$$

The central difference scheme
$c_{H}=-\frac{\epsilon}{H^{2}}-\frac{\alpha}{2 H}, \quad a_{H}=\frac{2 \epsilon}{H^{2}}+\beta, \quad b_{H}=-\frac{\epsilon}{H^{2}}+\frac{\alpha}{2 H}$,
$c=-\frac{2 \epsilon}{H(H+h)}-\frac{\alpha}{h+H}, \quad a=\frac{2 \epsilon}{h H}+\beta, \quad b=-\frac{2 \epsilon}{h(H+h)}+\frac{\alpha}{h+H}$,
$c_{h}=-\frac{\epsilon}{h^{2}}-\frac{\alpha}{2 h}, \quad a_{h}=\frac{2 \epsilon}{h^{2}}+\beta, \quad b_{h}=-\frac{\epsilon}{h^{2}}+\frac{\alpha}{2 h}$.

Matrix properties

- nonsymmetric
- A is M -matrix for the upwind scheme
- A is not an M -matrix for the central difference scheme
- A is highly nonnormal. Consider

$$
-\epsilon u^{\prime \prime}+u^{\prime}=1, \quad u(0)=0, \quad u(1)=0
$$

$\epsilon=10^{-8}$ and $N=46$, and the spectral decomposition

$$
A=Y D Y^{-1}
$$

Matrix properties

- nonsymmetric
- A is M -matrix for the upwind scheme
- A is not an M -matrix for the central difference scheme
- A is highly nonnormal. Consider

$$
-\epsilon u^{\prime \prime}+u^{\prime}=1, \quad u(0)=0, \quad u(1)=0
$$

$\epsilon=10^{-8}$ and $N=46$, and the spectral decomposition

$$
A=Y D Y^{-1}
$$

	upwind	upwind sc.	central	central sc.
$\kappa(A)$	4.05×10^{10}	2.96×10^{3}	6.23×10^{10}	2.95×10^{3}
$\kappa(Y)$	1.51×10^{17}	1.23×10^{19}	4.11×10^{3}	1.87×10^{2}

Solving linear system using GMRES

Convergence of GMRES for the upwind scheme

Outline

(1) Shishkin mesh and discretization
(2) How to solve the linear system?
(3) Multiplicative Schwarz method

4 Convergence analysis
(5) Schwarz method as a preconditioner
(6) Numerical examples

Multiplicative Schwarz method

Idea of solving $A x=b$

- Given an approximation $x^{(k)}$, then $x=x^{(k)}+y$ and y satisfies

$$
A y=b-A x^{(k)}
$$

Multiplicative Schwarz method

Idea of solving $A x=b$

- Given an approximation $x^{(k)}$, then $x=x^{(k)}+y$ and y satisfies

$$
A y=b-A x^{(k)}
$$

- Restriction operators $R_{1}=\left[\begin{array}{ll}I_{n} & 0\end{array}\right], R_{2}=\left[\begin{array}{ll}0 & I_{n}\end{array}\right]$.

Multiplicative Schwarz method

Idea of solving $A x=b$

- Given an approximation $x^{(k)}$, then $x=x^{(k)}+y$ and y satisfies

$$
A y=b-A x^{(k)}
$$

- Restriction operators $R_{1}=\left[\begin{array}{ll}I_{n} & 0\end{array}\right], R_{2}=\left[\begin{array}{ll}0 & I_{n}\end{array}\right]$.
- Solve on the first domain

$$
\left(R_{1} A R_{1}^{T}\right) \tilde{y}=R_{1}\left(b-A x^{(k)}\right)
$$

and approximate y by prolongation of \tilde{y}, i.e., by $R_{1}^{T} \tilde{y}$. Define

$$
x^{\left(k+\frac{1}{2}\right)}=x^{(k)}+R_{1}^{T}\left(R_{1} A R_{1}^{T}\right)^{-1} R_{1}\left(b-A x^{(k)}\right)
$$

Multiplicative Schwarz method

Idea of solving $A x=b$

- Given an approximation $x^{(k)}$, then $x=x^{(k)}+y$ and y satisfies

$$
A y=b-A x^{(k)}
$$

- Restriction operators $R_{1}=\left[\begin{array}{ll}I_{n} & 0\end{array}\right], R_{2}=\left[\begin{array}{ll}0 & I_{n}\end{array}\right]$.
- Solve on the first domain

$$
\left(R_{1} A R_{1}^{T}\right) \tilde{y}=R_{1}\left(b-A x^{(k)}\right)
$$

and approximate y by prolongation of \tilde{y}, i.e., by $R_{1}^{T} \tilde{y}$. Define

$$
x^{\left(k+\frac{1}{2}\right)}=x^{(k)}+R_{1}^{T}\left(R_{1} A R_{1}^{T}\right)^{-1} R_{1}\left(b-A x^{(k)}\right)
$$

- Similarly, use $x^{\left(k+\frac{1}{2}\right)}$ on the second domain and prolong,

$$
x^{(k+1)}=x^{\left(k+\frac{1}{2}\right)}+R_{2}^{T}\left(R_{2} A R_{2}^{T}\right)^{-1} R_{2}\left(b-A x^{\left(k+\frac{1}{2}\right)}\right) .
$$

Multiplicative Schwarz method

Formalism

Define

$$
P_{i}=R_{i}^{T} A_{i}^{-1} R_{i} A, \quad A_{i} \equiv R_{i} A R_{i}^{T}, \quad i=1,2
$$

The multiplicative Schwarz is the iterative scheme

$$
x^{(k+1)}=T x^{(k)}+v, \quad T=\left(I-P_{2}\right)\left(I-P_{1}\right),
$$

where v is defined such that the scheme is consistent.

Multiplicative Schwarz method

Formalism

Define

$$
P_{i}=R_{i}^{T} A_{i}^{-1} R_{i} A, \quad A_{i} \equiv R_{i} A R_{i}^{T}, \quad i=1,2
$$

The multiplicative Schwarz is the iterative scheme

$$
x^{(k+1)}=T x^{(k)}+v, \quad T=\left(I-P_{2}\right)\left(I-P_{1}\right),
$$

where v is defined such that the scheme is consistent. Hence,

$$
x-x^{(k+1)}=T^{k+1}\left(x-x_{0}\right)
$$

and

$$
\left\|x-x^{(k+1)}\right\| \leq\left\|T^{k+1}\right\|\left\|x-x_{0}\right\|
$$

Is it convergent in our case?

Multiplicative Schwarz method

Experiment

upwind difference scheme

Outline

(1) Shishkin mesh and discretization
(2) How to solve the linear system?
(3) Multiplicative Schwarz method
(4) Convergence analysis
(5) Schwarz method as a preconditioner
(6) Numerical examples

Convergence analysis

Exploiting the structure

$$
\frac{\left\|x-x^{(k+1)}\right\|}{\left\|x-x_{0}\right\|} \leq\left\|T^{k+1}\right\|
$$

Using $T=\left(I-P_{2}\right)\left(I-P_{1}\right)$ we are able to show that

$$
T=\left[\begin{array}{c|c|c}
& t_{1} & \\
0 \ldots 0 & \vdots & \\
& t_{n+1} & 0 \ldots 0 \\
\vdots & & \\
& t_{N-1} &
\end{array}\right]=t e_{n+1}^{T}
$$

Convergence analysis

Exploiting the structure

$$
\frac{\left\|x-x^{(k+1)}\right\|}{\left\|x-x_{0}\right\|} \leq\left\|T^{k+1}\right\|
$$

Using $T=\left(I-P_{2}\right)\left(I-P_{1}\right)$ we are able to show that

$$
T=\left[\begin{array}{c|c|c}
& t_{1} & \\
0 \ldots 0 & \vdots & \\
& t_{n+1} & 0 \ldots 0 \\
\vdots & & \\
& t_{N-1} &
\end{array}\right]=t e_{n+1}^{T}
$$

Therefore, $T^{2}=t\left(e_{n+1}^{T} t\right) e_{n+1}^{T}=t_{n+1} T$, and

$$
\left\|T^{k+1}\right\|=\left|t_{n+1}\right|^{k}\|T\|
$$

How to bound $\left|t_{n+1}\right|$, and $\|T\|$ in a convenient norm $\left(\|\cdot\|_{\infty}\right)$?

Convergence analysis

Details

Let $m \equiv n-1, \rho \equiv\left|t_{n+1}\right| \ldots$ the convergence factor. Then,

$$
\rho=\left|\frac{b b_{H}\left(A_{H}^{-1}\right)_{m, m}}{a-c b_{H}\left(A_{H}^{-1}\right)_{m, m}}\right|\left|\frac{c c_{h}\left(A_{h}^{-1}\right)_{1,1}}{a-b c_{h}\left(A_{h}^{-1}\right)_{1,1}}\right| .
$$

Convergence analysis

A matrix $B=\left[b_{i, j}\right]$ is called a nonsingular M-matrix when

- B is nonsingular,
- $b_{i, i}>0$ for all $i, b_{i, j} \leq 0$ for all $i \neq j$,
- and $B^{-1} \geq 0$ (elementwise).

Convergence analysis

```
Bounding ( (AHT-1)}\mp@subsup{m}{m,m}{}\mathrm{ and ( (Ah}\mp@subsup{A}{1,1}{-1
```

A matrix $B=\left[b_{i, j}\right]$ is called a nonsingular M-matrix when

- B is nonsingular,
- $b_{i, i}>0$ for all $i, b_{i, j} \leq 0$ for all $i \neq j$,
- and $B^{-1} \geq 0$ (elementwise).

If A_{H} and A_{h} are nonsingular M-matrices, then using [N abben 1999],

$$
\begin{gathered}
\left(A_{H}^{-1}\right)_{m, m} \leq \min \left\{\frac{1}{\left|b_{H}\right|}, \frac{1}{\left|c_{H}\right|}\right\} \\
\left(A_{h}^{-1}\right)_{1,1} \leq \min \left\{\frac{1}{\left|b_{h}\right|}, \frac{1}{\left|c_{h}\right|}\right\}
\end{gathered}
$$

A sufficient condition: The sign conditions \& irreducibly diagonal dominant \Rightarrow nonsingular M-matrix. [Meurant, 1996], [Hackbusch, 2010]

Convergence analysis

The upwind scheme

The matrices A_{H} and A_{h} are M-matrices, and we know that

$$
\frac{\left\|e^{(k+1)}\right\|_{\infty}}{\left\|e^{(0)}\right\|_{\infty}} \leq \rho^{k}\|T\|_{\infty}
$$

Convergence analysis

The upwind scheme

The matrices A_{H} and A_{h} are M-matrices, and we know that

$$
\frac{\left\|e^{(k+1)}\right\|_{\infty}}{\left\|e^{(0)}\right\|_{\infty}} \leq \rho^{k}\|T\|_{\infty}
$$

Theorem (the upwind scheme) [Echeverría, Liesen, T. , Szyld, 2016]
For the upwind scheme we have

$$
\rho \leq \frac{\epsilon}{\epsilon+\alpha H} \leq \frac{\epsilon}{\epsilon+\frac{\alpha}{N}},
$$

and

$$
\|T\|_{\infty} \leq \frac{\epsilon}{\epsilon+\alpha H}
$$

Convergence analysis

The central difference scheme

- A_{h} is still an M-matrix.
- If $\alpha H>2 \epsilon$, i.e. $b_{H}>0$, then A_{H} is not an M-matrix
... the most common situation from a practical point of view.

Convergence analysis

The central difference scheme

- A_{h} is still an M-matrix.
- If $\alpha H>2 \epsilon$, i.e. $b_{H}>0$, then A_{H} is not an M-matrix
...the most common situation from a practical point of view.
- Recall

$$
\rho=\left|\frac{b b_{H}\left(A_{H}^{-1}\right)_{m, m}}{a-c b_{H}\left(A_{H}^{-1}\right)_{m, m}}\right|\left|\frac{c c_{h}\left(A_{h}^{-1}\right)_{1,1}}{a-b c_{h}\left(A_{h}^{-1}\right)_{1,1}}\right| .
$$

- How to bound $\left(A_{H}^{-1}\right)_{m, m}$? ... results by [Usmani 1994]

Convergence analysis

The central difference scheme

- A_{h} is still an M-matrix.
- If $\alpha H>2 \epsilon$, i.e. $b_{H}>0$, then A_{H} is not an M-matrix
...the most common situation from a practical point of view.
- Recall

$$
\rho=\left|\frac{b b_{H}\left(A_{H}^{-1}\right)_{m, m}}{a-c b_{H}\left(A_{H}^{-1}\right)_{m, m}}\right|\left|\frac{c c_{h}\left(A_{h}^{-1}\right)_{1,1}}{a-b c_{h}\left(A_{h}^{-1}\right)_{1,1}}\right| .
$$

- How to bound $\left(A_{H}^{-1}\right)_{m, m}$? . . results by [Usmani 1994]
- We proved: If $m=N / 2-1$ is even, then

$$
b_{H}\left(A_{H}^{-1}\right)_{m, m} \leq \frac{1-\left|\frac{b_{H}}{c_{H}}\right|^{m}}{\left|\frac{c_{H}}{b_{H}}\right|+\left|\frac{b_{H}}{c_{H}}\right|^{m}}<\frac{2 m \epsilon}{\epsilon+\frac{\alpha H}{2}} .
$$

Convergence analysis

The central difference scheme

A_{h} is M-matrix, if $\alpha H>2 \epsilon, A_{H}$ is not an M-matrix.
Theorem (the central diff. scheme) [Echeverría, Liesen, T. , Szyld, 2016]
Let $m=N / 2-1$ be even, and let $\alpha H>2 \epsilon$. For the central differences we have

$$
\begin{gathered}
\rho<\frac{2 m \epsilon}{\epsilon+\frac{\alpha H}{2}}<N \frac{\epsilon}{\epsilon+\frac{\alpha}{N}}, \\
\|T\|_{\infty}<2
\end{gathered}
$$

Thus, the error of the multiplicative Schwarz method satisfies

$$
\frac{\left\|e^{(k+1)}\right\|_{\infty}}{\left\|e^{(0)}\right\|_{\infty}}<2\left(\frac{2 m \epsilon}{\epsilon+\frac{\alpha H}{2}}\right)^{k}
$$

Remarks on diagonally scaled linear algebraic systems

 $D A x=D b$The ill-conditioning can be avoided by diagonal scaling [Roos 1996]: $A x=b$ is multiplied from the left by

$$
D=\left[\begin{array}{l|l|l}
d_{H} I_{m} & & \\
\hline & d & \\
\hline & & d_{h} I_{m}
\end{array}\right]
$$

Remarks on diagonally scaled linear algebraic systems

 $D A x=D b$The ill-conditioning can be avoided by diagonal scaling [Roos 1996]:
$A x=b$ is multiplied from the left by

$$
D=\left[\begin{array}{l|l|l}
d_{H} I_{m} & & \\
\hline & d & \\
\hline & & d_{h} I_{m}
\end{array}\right]
$$

- Such a scaling preserves the Toeplitz structure and the M-matrix property of the submatrices.
- Analysis depends on these properties and on ratios between elements in the same row such as $|b / a|$ and $\left|b_{H} / c_{H}\right|$. These ratios are invariant under diagonal scaling.

Remarks on diagonally scaled linear algebraic systems

$D A x=D b$

The ill-conditioning can be avoided by diagonal scaling [Roos 1996]:
$A x=b$ is multiplied from the left by

$$
D=\left[\begin{array}{l|l|l}
d_{H} I_{m} & & \\
\hline & d & \\
\hline & & d_{h} I_{m}
\end{array}\right]
$$

- Such a scaling preserves the Toeplitz structure and the M-matrix property of the submatrices.
- Analysis depends on these properties and on ratios between elements in the same row such as $|b / a|$ and $\left|b_{H} / c_{H}\right|$. These ratios are invariant under diagonal scaling.
- Consequently, all convergence bounds hold for the multiplicative Schwarz method applied to $D A x=D b$.

Outline

(1) Shishkin mesh and discretization
(2) How to solve the linear system?
(3) Multiplicative Schwarz method

4 Convergence analysis
(5) Schwarz method as a preconditioner
(6) Numerical examples

Schwarz method as a preconditioner

We have consistent scheme

$$
x^{(k+1)}=T x^{(k)}+v
$$

Hence, x solves $A x=b$ and also "the preconditioned system"

$$
(I-T) x=v
$$

Schwarz method as a preconditioner

We have consistent scheme

$$
x^{(k+1)}=T x^{(k)}+v
$$

Hence, x solves $A x=b$ and also "the preconditioned system"

$$
(I-T) x=v
$$

We can formally define a preconditioner M such

$$
A x=b \quad \Leftrightarrow M^{-1} A x=M^{-1} b \quad \Leftrightarrow(I-T) x=v
$$

Clearly $M=A(I-T)^{-1}$.

Schwarz method as a preconditioner

We have consistent scheme

$$
x^{(k+1)}=T x^{(k)}+v
$$

Hence, x solves $A x=b$ and also "the preconditioned system"

$$
(I-T) x=v
$$

We can formally define a preconditioner M such

$$
A x=b \quad \Leftrightarrow M^{-1} A x=M^{-1} b \quad \Leftrightarrow(I-T) x=v
$$

Clearly $M=A(I-T)^{-1}$. Then

$$
\begin{aligned}
x^{(k+1)} & =x^{(k)}+(I-T)\left(x-x^{(k)}\right) \\
& =x^{(k)}+M^{-1} r^{(k)}
\end{aligned}
$$

Schwarz method as a preconditioner for GMRES

- The multiplicative Schwarz method as well as GMRES applied to the preconditioned system obtain their approximations from the same Krylov subspace.
- In terms of the residual norm, the preconditioned GMRES will always converge faster than the multiplicative Schwarz.

Schwarz method as a preconditioner

 for GMRES- The multiplicative Schwarz method as well as GMRES applied to the preconditioned system obtain their approximations from the same Krylov subspace.
- In terms of the residual norm, the preconditioned GMRES will always converge faster than the multiplicative Schwarz.
- Moreover, in this case, the iteration matrix T has rank-one structure, and

$$
\operatorname{dim}\left(\mathcal{K}_{k}\left(I-T, r_{0}\right)\right) \leq 2
$$

- Therefore, GMRES converges in at most 2 steps,a motivation for more dimensional cases.

How to multiply by T

Schwarz or preconditioned GMRES \rightarrow only multiply by T,

$$
T=\left(I-P_{2}\right)\left(I-P_{1}\right), \quad P_{i}=R_{i}^{T}\left(R_{i} A R_{i}^{T}\right)^{-1} R_{i} A
$$

i.e., to solve systems of the form $\left(m=n-1=\frac{N}{2}-1\right)$

$$
\left[\begin{array}{ll|l}
{ }^{A_{H}} & \\
& & b_{H} \\
\hline & c & a
\end{array}\right]\left[\frac{y_{1: m}}{} \begin{array}{ll}
y_{m+1}
\end{array}\right]=\left[\frac{z_{1: m}}{z_{m+1}}\right] .
$$

How to multiply by T

Schwarz or preconditioned GMRES \rightarrow only multiply by T,

$$
T=\left(I-P_{2}\right)\left(I-P_{1}\right), \quad P_{i}=R_{i}^{T}\left(R_{i} A R_{i}^{T}\right)^{-1} R_{i} A
$$

i.e., to solve systems of the form $\left(m=n-1=\frac{N}{2}-1\right)$

$$
\left[\begin{array}{cc|c}
A_{H} & & \\
{ }^{A_{H}} & & b_{H} \\
\hline & c & a
\end{array}\right]\left[\frac{y_{1: m}}{y_{m+1}}\right]=\left[\frac{z_{1: m}}{z_{m+1}}\right] .
$$

Using the Schur complement,

$$
\left(A_{H}-\frac{b_{H} c}{a} e_{m} e_{m}^{T}\right) y_{1: m}=z_{1: m}-z_{m+1} \frac{b_{H}}{a_{H}} e_{m}
$$

Then apply Sherman-Morrison formula.
We need only to solve systems with A_{H} (Toeplitz)!

Outline

(1) Shishkin mesh and discretization
(2) How to solve the linear system?
(3) Multiplicative Schwarz method

4 Convergence analysis
(5) Schwarz method as a preconditioner
(6) Numerical examples

Numerical examples

Consider

$$
-\epsilon u^{\prime \prime}+u^{\prime}=1, \quad u(0)=0, \quad u(1)=0
$$

i.e.

$$
\alpha=1, \quad \beta=0, \quad f(x) \equiv 1
$$

Choose $N=198$, various values of ϵ.

	upwind		central differences	
ϵ	$\rho_{u p}$	our bound	$\rho_{c d}$	our bound
10^{-8}	9.4×10^{-7}	9.9×10^{-7}	1.8×10^{-4}	3.9×10^{-4}
10^{-6}	9.4×10^{-5}	9.9×10^{-5}	1.8×10^{-2}	3.9×10^{-2}
10^{-4}	9.3×10^{-3}	9.8×10^{-3}	8.3×10^{-1}	3.8×10^{-0}

$$
\rho_{u p}<\frac{\epsilon}{\epsilon+\alpha H}, \quad \rho_{c d}<\frac{2 m \epsilon}{\epsilon+\frac{\alpha H}{2}} .
$$

Numerical examples

Upwind, $\epsilon=10^{-8}$

Upwind

Numerical examples

Upwind, $\epsilon=10^{-4}$

Upwind

Numerical examples

Central differences, $\epsilon=10^{-8}$

Central differences

Numerical examples

Central differences, $\epsilon=10^{-4}$

Central differences

Conclusions and further work

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a Shishkin mesh.

Conclusions and further work

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a Shishkin mesh.
- The matrices that arise from the upwind and the central difference schemes are nonsymmetric and highly nonnormal.

Conclusions and further work

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a Shishkin mesh.
- The matrices that arise from the upwind and the central difference schemes are nonsymmetric and highly nonnormal.
- For the upwind scheme, we proved rapid convergence of the multiplicative Schwarz method in the most relevant case $N \epsilon<\alpha$.

Conclusions and further work

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a Shishkin mesh.
- The matrices that arise from the upwind and the central difference schemes are nonsymmetric and highly nonnormal.
- For the upwind scheme, we proved rapid convergence of the multiplicative Schwarz method in the most relevant case $N \epsilon<\alpha$.
- The convergence for the central difference scheme is slower, but still rapid, when $N^{2} \epsilon<\alpha$ and if $N / 2-1$ is even.

Conclusions and further work

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a Shishkin mesh.
- The matrices that arise from the upwind and the central difference schemes are nonsymmetric and highly nonnormal.
- For the upwind scheme, we proved rapid convergence of the multiplicative Schwarz method in the most relevant case $N \epsilon<\alpha$.
- The convergence for the central difference scheme is slower, but still rapid, when $N^{2} \epsilon<\alpha$ and if $N / 2-1$ is even.
- Thanks to the rank-one structure of T, the preconditioned GMRES converges in two steps.

Conclusions and further work

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a Shishkin mesh.
- The matrices that arise from the upwind and the central difference schemes are nonsymmetric and highly nonnormal.
- For the upwind scheme, we proved rapid convergence of the multiplicative Schwarz method in the most relevant case $N \epsilon<\alpha$.
- The convergence for the central difference scheme is slower, but still rapid, when $N^{2} \epsilon<\alpha$ and if $N / 2-1$ is even.
- Thanks to the rank-one structure of T, the preconditioned GMRES converges in two steps.
- Inspired by 1D case (preconditioner, low-rank structure), we can study 2D case.

Related papers

- C. Echeverría, J. Liesen, P. Tichý, and D. Szyld, [Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on a Shishkin mesh, (2016), in preparation]
- J. Miller, E. O'Riordan, and G. Shishkin, [Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, 1996.]
- H-G. Roos, M. Stynes, L. Tobiska, [Robust Numerical Methods for Singularly Perturbed Differential Equations, second edition, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2008, 604 pp.]
- M. Stynes, [Steady-state convection-diffusion problems, Acta Numerica, 14 (2005), pp. 445-508.]

Thank you for your attention!

