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Problem formulation

Convection-diffusion boundary value problem

−ε u′′ + αu′ + β u = f in Ω = (0, 1),

u(0) = u0, u(1) = u1,

α > 0, β ≥ 0 constants, the problem is convection dominated

0 < ε� α.

[Stynes, 2005] (Acta Numerica)
[Roos, Stynes, and Tobiska, 1996, 2008] (book)
[Miller, O’Riordan, and Shishkin, 1996] (book)
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Solution and boundary layers
ε = 0.01, α = 1, β = 0, u(0) = u(1) = 0.

There are small subregions where the solution has a large gradient.
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Numerical solution, equidistant mesh

Standard techniques:

u′(ih) ≈ ui+1 − ui−1
2h , u′(ih) ≈ ui − ui−1

h
.

Unnatural oscillations or cannot resolve the layers.

Remedy: stabilization or non-equidistant mesh.

We study discretizations for a Shishkin mesh.
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Shishkin mesh on [0, 1]
Piecewise equidistant

N even, define the transition point 1− τ and n by

τ ≡ min
{1

2 ,
ε

α
2 lnN

}
, n ≡ N

2 .

If ε� α, then 1− τ is close to 1. Next define H and h by

H ≡ 1− τ
n

, h ≡ τ

n

and consider the Shishkin mesh, x0 = 0,

xi ≡ iH, xn+i ≡ xn + ih, i = 1, . . . , n.
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Discretization on the Shishkin mesh - details
For simplicity u(0) = u(1) = 0

The upwind difference scheme is given by

−ε δ2
xui + αD−

xui + βui = fi, u0 = uN = 0,

and the central difference scheme by

−ε δ2
xui + αD0

x + βui = fi, u0 = uN = 0,

where

δ2
xui = 2ui−1

(H + h)H −
2ui
Hh

+ 2ui+1
(H + h)h, i = n,

and

D−
xui = ui − ui−1

H
, 1 ≤ i ≤ n, D0

xui = ui+1 − ui−1
h+H

, i = n.

surveys [Linss, Stynes, 2001], [Stynes, 2005], [Kopteva, O’Riordan, 2010]
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Shishkin mesh and ε-uniform convergence

The upwind difference scheme

−ε δ2
xui + αD−

xui + βui = fi, u0 = uN = 0.

There exists a constant C such that

|u(xi)− ui| ≤ C

( lnN
N

)
, i = 0, . . . , N,

see, e.g., [Stynes, 2005].

The central difference scheme

−ε δ2
xui + αD0

xui + βui = fi, u0 = uN = 0.

There exists a constant C such that

|u(xi)− ui| ≤ C

( lnN
N

)2
, i = 0, . . . , N,

[Andreev and Kopteva, 1996], a difficult proof, the scheme does not
satisfy a discrete maximum principle. [Kopteva and Linss, 2001].
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Structure of the matrix

A =



aH bH

cH

. . . . . .

. . . . . . bH

cH aH bH

c a b
ch ah bh

ch

. . . . . .

. . . . . . bh

ch ah
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Entries

The upwind scheme

cH = − ε

H2 −
α

H
, aH = 2ε

H2 + α

H
+ β, bH = − ε

H2 ,

c = − 2ε
H(H + h) −

α

H
, a = 2ε

hH
+ α

H
+ β, b = − 2ε

h(H + h) ,

ch = − ε

h2 −
α

h
, ah = 2ε

h2 + α

h
+ β, bh = − ε

h2 .

The central difference scheme

cH = − ε

H2 −
α

2H , aH = 2ε
H2 + β, bH = − ε

H2 + α

2H ,

c = − 2ε
H(H + h) −

α

h+H
, a = 2ε

hH
+ β, b = − 2ε

h(H + h) + α

h+H
,

ch = − ε

h2 −
α

2h, ah = 2ε
h2 + β, bh = − ε

h2 + α

2h.
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Matrix properties

nonsymmetric
A is M-matrix for the upwind scheme
A is not an M-matrix for the central difference scheme
A is highly nonnormal. Consider

−εu′′ + u′ = 1, u(0) = 0, u(1) = 0,

ε = 10−8 and N = 46, and the spectral decomposition

A = Y DY −1.

upwind upwind sc. central central sc.
κ(A) 4.05× 1010 2.96× 103 6.23× 1010 2.95× 103

κ(Y ) 1.51× 1017 1.23× 1019 4.11× 103 1.87× 102
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Solving linear system using GMRES
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Multiplicative Schwarz method
Idea of solving Ax = b

Given an approximation x(k), then x = x(k) + y and y satisfies

Ay = b−Ax(k).

Restriction operators R1 =
[
In 0

]
, R2 =

[
0 In

]
.

Solve on the first domain

(R1AR
T
1 ) ỹ = R1(b−Ax(k))

and approximate y by prolongation of ỹ, i.e., by RT1 ỹ. Define

x(k+ 1
2 ) = x(k) +RT1 (R1AR

T
1 )−1R1(b−Ax(k)).

Similarly, use x(k+ 1
2 ) on the second domain and prolong,

x(k+1) = x(k+ 1
2 ) +RT2 (R2AR

T
2 )−1R2

(
b−Ax(k+ 1

2 )
)
.
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1 ) ỹ = R1(b−Ax(k))

and approximate y by prolongation of ỹ, i.e., by RT1 ỹ. Define
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Multiplicative Schwarz method
Formalism

Define

Pi = RTi A
−1
i RiA, Ai ≡ RiARTi , i = 1, 2.

The multiplicative Schwarz is the iterative scheme

x(k+1) = T x(k) + v, T = (I − P2)(I − P1),

where v is defined such that the scheme is consistent.

Hence,

x− x(k+1) = T k+1 (x− x0),

and
‖x− x(k+1)‖ ≤ ‖T k+1‖ ‖x− x0‖.

Is it convergent in our case?
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Multiplicative Schwarz method
Experiment
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Convergence analysis
Exploiting the structure

‖x− x(k+1)‖
‖x− x0‖

≤ ‖T k+1‖ .

Using T = (I − P2)(I − P1) we are able to show that

T =


0 . . . 0

t1
...

tn+1
...

tN−1

0 . . . 0


= t eTn+1.

Therefore, T 2 = t (eTn+1 t) eTn+1 = tn+1 T , and

‖T k+1‖ = |tn+1|k ‖T‖ .

How to bound |tn+1|, and ‖T‖ in a convenient norm (‖ · ‖∞)?
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Convergence analysis
Details

A =


AH

bH

c a b
ch

Ah


.

Let m ≡ n− 1, ρ ≡ |tn+1| . . . the convergence factor. Then,

ρ =

∣∣∣∣∣∣∣
bbH

(
A−1

H

)
m,m

a− cbH

(
A−1

H

)
m,m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

cch

(
A−1

h

)
1,1

a− bch

(
A−1

h

)
1,1

∣∣∣∣∣∣∣ .
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Convergence analysis
Bounding

(
A−1

H

)
m,m

and
(
A−1

h

)
1,1

A matrix B = [bi,j ] is called a nonsingular M-matrix when
B is nonsingular,
bi,i > 0 for all i, bi,j ≤ 0 for all i 6= j,
and B−1 ≥ 0 (elementwise).

If AH and Ah are nonsingular M-matrices, then using [Nabben 1999],(
A−1

H

)
m,m
≤ min

{ 1
|bH |

,
1
|cH |

}
,

(
A−1

h

)
1,1
≤ min

{ 1
|bh|

,
1
|ch|

}
.

A sufficient condition: The sign conditions & irreducibly diagonal
dominant ⇒ nonsingular M -matrix. [Meurant, 1996], [Hackbusch, 2010]
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Convergence analysis
The upwind scheme

The matrices AH and Ah are M-matrices, and we know that

‖e(k+1)‖∞
‖e(0)‖∞

≤ ρk‖T‖∞.

Theorem (the upwind scheme) [Echeverría, Liesen, T. , Szyld, 2016]

For the upwind scheme we have

ρ ≤ ε

ε+ αH
≤ ε

ε+ α
N

,

and

‖T‖∞ ≤
ε

ε+ αH
.
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Convergence analysis
The central difference scheme

Ah is still an M -matrix.
If αH > 2ε, i.e. bH > 0, then AH is not an M -matrix
. . . the most common situation from a practical point of view.

Recall

ρ =

∣∣∣∣∣∣∣
bbH

(
A−1

H

)
m,m

a− cbH

(
A−1

H

)
m,m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

cch

(
A−1

h

)
1,1

a− bch

(
A−1

h

)
1,1

∣∣∣∣∣∣∣ .
How to bound

(
A−1

H

)
m,m? . . . results by [Usmani 1994]

We proved: If m = N/2− 1 is even, then

bH(A−1
H )m,m ≤

1−
∣∣∣ bH
cH

∣∣∣m∣∣∣ cH
bH

∣∣∣+ ∣∣∣ bH
cH

∣∣∣m <
2mε
ε+ αH

2
.
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Convergence analysis
The central difference scheme

Ah is M-matrix, if αH > 2ε, AH is not an M -matrix.

Theorem (the central diff. scheme) [Echeverría, Liesen, T. , Szyld, 2016]

Let m = N/2− 1 be even, and let αH > 2ε. For the central
differences we have

ρ <
2mε
ε+ αH

2
< N

ε

ε+ α
N

,

‖T‖∞ < 2.

Thus, the error of the multiplicative Schwarz method satisfies

‖e(k+1)‖∞
‖e(0)‖∞

< 2
(

2mε
ε+ αH

2

)k
.

24



Remarks on diagonally scaled linear algebraic systems
DAx = Db

The ill-conditioning can be avoided by diagonal scaling [Roos 1996]:
Ax = b is multiplied from the left by

D =

 dHIm
d

dhIm

 .

Such a scaling preserves the Toeplitz structure and
the M-matrix property of the submatrices.

Analysis depends on these properties and on ratios between
elements in the same row such as |b/a| and |bH/cH |. These
ratios are invariant under diagonal scaling.

Consequently, all convergence bounds hold for the
multiplicative Schwarz method applied to DAx = Db.
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Schwarz method as a preconditioner

We have consistent scheme

x(k+1) = T x(k) + v.

Hence, x solves Ax = b and also “the preconditioned system”

(I − T )x = v.

We can formally define a preconditioner M such

Ax = b ⇔M−1Ax = M−1b ⇔ (I − T )x = v.

Clearly M = A(I − T )−1. Then

x(k+1) = x(k) + (I − T )(x− x(k))
= x(k) +M−1r(k).
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Schwarz method as a preconditioner
for GMRES

The multiplicative Schwarz method as well as GMRES
applied to the preconditioned system obtain their
approximations from the same Krylov subspace.

In terms of the residual norm, the preconditioned GMRES
will always converge faster than the multiplicative Schwarz.

Moreover, in this case, the iteration matrix T has rank-one
structure, and

dim (Kk(I − T, r0)) ≤ 2.

Therefore, GMRES converges in at most 2 steps,
. . . a motivation for more dimensional cases.
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How to multiply by T

Schwarz or preconditioned GMRES → only multiply by T ,

T = (I − P2)(I − P1), Pi = RTi (RiARTi )−1RiA,

i.e., to solve systems of the form (m = n− 1 = N
2 − 1) AH

bH

c a

 [ y1:m
ym+1

]
=
[
z1:m
zm+1

]
.

Using the Schur complement,(
AH −

bHc

a
eme

T
m

)
y1:m = z1:m − zm+1

bH

aH

em.

Then apply Sherman-Morrison formula.

We need only to solve systems with AH (Toeplitz)!
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[
z1:m
zm+1

]
.

Using the Schur complement,(
AH −

bHc

a
eme

T
m

)
y1:m = z1:m − zm+1

bH

aH

em.

Then apply Sherman-Morrison formula.

We need only to solve systems with AH (Toeplitz)!
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Numerical examples

Consider
−εu′′ + u′ = 1, u(0) = 0, u(1) = 0,

i.e.
α = 1, β = 0, f(x) ≡ 1 .

Choose N = 198, various values of ε.

upwind central differences
ε ρup our bound ρcd our bound

10−8 9.4× 10−7 9.9× 10−7 1.8× 10−4 3.9× 10−4

10−6 9.4× 10−5 9.9× 10−5 1.8× 10−2 3.9× 10−2

10−4 9.3× 10−3 9.8× 10−3 8.3× 10−1 3.8× 10−0

ρup <
ε

ε+ αH
, ρcd <

2mε
ε+ αH

2
.
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Numerical examples
Upwind, ε = 10−8
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Numerical examples
Upwind, ε = 10−4
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Numerical examples
Central differences, ε = 10−8
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Numerical examples
Central differences, ε = 10−4
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Conclusions and further work

We considered finite difference discretizations
of the 1D singularly-perturbed convection-diffusion equation
posed on a Shishkin mesh.

The matrices that arise from the upwind and the central
difference schemes are nonsymmetric and highly nonnormal.

For the upwind scheme, we proved rapid convergence
of the multiplicative Schwarz method in the most relevant
case Nε < α.

The convergence for the central difference scheme is slower,
but still rapid, when N2ε < α and if N/2− 1 is even.

Thanks to the rank-one structure of T , the preconditioned
GMRES converges in two steps.

Inspired by 1D case (preconditioner, low-rank structure),
we can study 2D case.
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Thank you for your attention!
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