On solving linear systems arising from Shishkin mesh discretizations

Petr Tichý

Faculty of Mathematics and Physics, Charles University

joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld

October 20, 2016, Prague Seminar of Numerical Mathematics, KNM MFF UK

Problem formulation

Convection-diffusion boundary value problem

$$\begin{aligned} -\epsilon \, u'' + \alpha \, u' + \beta \, u &= f \quad \text{in} \quad \Omega = (0,1), \\ u(0) &= u_0, \quad u(1) = u_1, \end{aligned}$$

 $\alpha>0\text{, }\beta\geq0$ constants, the problem is convection dominated

 $0 < \epsilon \ll \alpha$.

[Stynes, 2005] (Acta Numerica) [Roos, Stynes, and Tobiska, 1996, 2008] (book) [Miller, O'Riordan, and Shishkin, 1996] (book)

Solution and boundary layers

 $\epsilon = 0.01, \ \alpha = 1, \ \beta = 0, \ u(0) = u(1) = 0.$

There are small subregions where the solution has a large gradient.

Numerical solution, equidistant mesh

Standard techniques:

$$u'(ih) \approx \frac{u_{i+1} - u_{i-1}}{2h}, \qquad u'(ih) \approx \frac{u_i - u_{i-1}}{h}$$

- Unnatural oscillations or cannot resolve the layers.
- Remedy: stabilization or **non-equidistant** mesh.
- We study discretizations for a Shishkin mesh.

Outline

1 Shishkin mesh and discretization

- 2 How to solve the linear system?
- 3 Multiplicative Schwarz method
- 4 Convergence analysis
- 5 Schwarz method as a preconditioner
- 6 Numerical examples

Shishkin mesh on [0,1]

Piecewise equidistant

N even, define the transition point $1-\tau$ and n by

$$au \equiv \min\left\{rac{1}{2}, rac{\epsilon}{lpha} 2\ln N
ight\}, \qquad n \equiv rac{N}{2}$$

If $\epsilon \ll \alpha,$ then $1-\tau$ is close to 1. Next define H and h by

$$H \equiv rac{1- au}{n}, \qquad h \equiv rac{ au}{n}$$

and consider the Shishkin mesh, $x_0 = 0$,

$$x_i \equiv iH, \qquad x_{n+i} \equiv x_n + ih, \quad i = 1, \dots, n.$$

Discretization on the Shishkin mesh - details For simplicity u(0) = u(1) = 0

The **upwind** difference scheme is given by

$$-\epsilon \,\delta_x^2 u_i + \alpha \, D_x^- u_i + \beta u_i = f_i, \qquad u_0 = u_N = 0,$$

and the **central difference** scheme by

$$-\epsilon \,\delta_x^2 u_i + \alpha D_x^0 + \beta u_i = f_i, \qquad u_0 = u_N = 0,$$

where

$$\delta_x^2 u_i = \frac{2u_{i-1}}{(H+h)H} - \frac{2u_i}{Hh} + \frac{2u_{i+1}}{(H+h)h}, \qquad i = n,$$

and

$$D_x^- u_i = \frac{u_i - u_{i-1}}{H}, \quad 1 \le i \le n, \qquad D_x^0 u_i = \frac{u_{i+1} - u_{i-1}}{h+H}, \quad i = n.$$

SURVEYS [Linss, Stynes, 2001], [Stynes, 2005], [Kopteva, O'Riordan, 2010]

Shishkin mesh and ϵ -uniform convergence

• The upwind difference scheme

$$-\epsilon \,\delta_x^2 u_i + \alpha \, D_x^- u_i + \beta u_i = f_i, \qquad u_0 = u_N = 0.$$

There exists a constant C such that

$$|u(x_i) - u_i| \leq C\left(\frac{\ln N}{N}\right), \quad i = 0, \dots, N,$$

see, e.g., [Stynes, 2005].

Shishkin mesh and ϵ -uniform convergence

• The upwind difference scheme

$$-\epsilon \,\delta_x^2 u_i + \alpha \, D_x^- u_i + \beta u_i = f_i, \qquad u_0 = u_N = 0.$$

There exists a constant C such that

$$|u(x_i) - u_i| \leq C\left(\frac{\ln N}{N}\right), \quad i = 0, \dots, N,$$

see, e.g., [Stynes, 2005].

• The central difference scheme

$$-\epsilon \,\delta_x^2 u_i + \alpha \, D_x^0 u_i + \beta u_i = f_i, \qquad u_0 = u_N = 0.$$

There exists a constant C such that

$$|u(x_i) - u_i| \le C \left(\frac{\ln N}{N}\right)^2, \quad i = 0, \dots, N,$$

[Andreev and Kopteva, 1996], a difficult proof, the scheme does not satisfy a discrete maximum principle. [Kopteva and Linss, 2001].

Shishkin mesh and discretization

- 2 How to solve the linear system?
- 3 Multiplicative Schwarz method
- 4 Convergence analysis
- 5 Schwarz method as a preconditioner
- 6 Numerical examples

Structure of the matrix

Entries

The upwind scheme

$$c_{H} = -\frac{\epsilon}{H^{2}} - \frac{\alpha}{H}, \qquad a_{H} = \frac{2\epsilon}{H^{2}} + \frac{\alpha}{H} + \beta, \qquad b_{H} = -\frac{\epsilon}{H^{2}},$$

$$c = -\frac{2\epsilon}{H(H+h)} - \frac{\alpha}{H}, \qquad a = \frac{2\epsilon}{hH} + \frac{\alpha}{H} + \beta, \qquad b = -\frac{2\epsilon}{h(H+h)},$$

$$c_{h} = -\frac{\epsilon}{h^{2}} - \frac{\alpha}{h}, \qquad a_{h} = \frac{2\epsilon}{h^{2}} + \frac{\alpha}{h} + \beta, \qquad b_{h} = -\frac{\epsilon}{h^{2}}.$$

The central difference scheme

$$\begin{split} c_{H} &= -\frac{\epsilon}{H^{2}} - \frac{\alpha}{2H}, \qquad a_{H} = \frac{2\epsilon}{H^{2}} + \beta, \quad b_{H} = -\frac{\epsilon}{H^{2}} + \frac{\alpha}{2H}, \\ c &= -\frac{2\epsilon}{H(H+h)} - \frac{\alpha}{h+H}, \quad a = \frac{2\epsilon}{hH} + \beta, \quad b = -\frac{2\epsilon}{h(H+h)} + \frac{\alpha}{h+H}, \\ c_{h} &= -\frac{\epsilon}{h^{2}} - \frac{\alpha}{2h}, \qquad a_{h} = \frac{2\epsilon}{h^{2}} + \beta, \quad b_{h} = -\frac{\epsilon}{h^{2}} + \frac{\alpha}{2h}. \end{split}$$

Matrix properties

- nonsymmetric
- $\bullet \ A$ is M-matrix for the upwind scheme
- $\bullet~A$ is not an M-matrix for the central difference scheme
- A is highly **nonnormal**. Consider

$$-\epsilon u'' + u' = 1, \quad u(0) = 0, \quad u(1) = 0,$$

 $\epsilon=10^{-8}$ and N=46, and the spectral decomposition

$$A = YDY^{-1}.$$

Matrix properties

- nonsymmetric
- $\bullet \ A$ is M-matrix for the upwind scheme
- $\bullet~A$ is not an M-matrix for the central difference scheme
- A is highly **nonnormal**. Consider

$$-\epsilon u'' + u' = 1, \quad u(0) = 0, \quad u(1) = 0,$$

 $\epsilon=10^{-8}$ and N=46, and the spectral decomposition

$$A = YDY^{-1}$$

	upwind	upwind sc.	central	central sc.
$\kappa(A)$	4.05×10^{10}	2.96×10^3	6.23×10^{10}	2.95×10^3
$\kappa(Y)$	1.51×10^{17}	$1.23 imes 10^{19}$	4.11×10^3	1.87×10^2

Solving linear system using GMRES

Shishkin mesh and discretization

- 2 How to solve the linear system?
- 3 Multiplicative Schwarz method
- 4 Convergence analysis
- 5 Schwarz method as a preconditioner
- 6 Numerical examples

 \bullet Given an approximation $x^{(k)},$ then $x=x^{(k)}+y$ and y satisfies

$$Ay = b - Ax^{(k)}.$$

• Given an approximation $x^{(k)}$, then $x = x^{(k)} + y$ and y satisfies $Ay = b - Ax^{(k)}.$

• **Restriction** operators $R_1 = \begin{bmatrix} I_n & 0 \end{bmatrix}$, $R_2 = \begin{bmatrix} 0 & I_n \end{bmatrix}$.

- Given an approximation $x^{(k)}$, then $x = x^{(k)} + y$ and y satisfies $Ay = b - Ax^{(k)}$.
- **Restriction** operators $R_1 = \begin{bmatrix} I_n & 0 \end{bmatrix}$, $R_2 = \begin{bmatrix} 0 & I_n \end{bmatrix}$.
- Solve on the first domain

$$(R_1 A R_1^T) \tilde{y} = R_1 (b - A x^{(k)})$$

and approximate y by prolongation of \tilde{y} , i.e., by $R_1^T \tilde{y}$. Define

$$x^{(k+\frac{1}{2})} = x^{(k)} + R_1^T (R_1 A R_1^T)^{-1} R_1 (b - A x^{(k)}).$$

- Given an approximation $x^{(k)}$, then $x = x^{(k)} + y$ and y satisfies $Ay = b Ax^{(k)}$.
- **Restriction** operators $R_1 = \begin{bmatrix} I_n & 0 \end{bmatrix}$, $R_2 = \begin{bmatrix} 0 & I_n \end{bmatrix}$.
- Solve on the first domain

$$(R_1 A R_1^T) \tilde{y} = R_1 (b - A x^{(k)})$$

and approximate y by **prolongation** of \tilde{y} , i.e., by $R_1^T \tilde{y}$. Define

$$x^{(k+\frac{1}{2})} = x^{(k)} + R_1^T (R_1 A R_1^T)^{-1} R_1 (b - A x^{(k)}).$$

• Similarly, use $x^{(k+\frac{1}{2})}$ on the second domain and prolong, $x^{(k+1)} = x^{(k+\frac{1}{2})} + R_2^T (R_2 A R_2^T)^{-1} R_2 \left(b - A x^{(k+\frac{1}{2})} \right).$

Multiplicative Schwarz method Formalism

Define

$$P_i = R_i^T A_i^{-1} R_i A, \quad A_i \equiv R_i A R_i^T, \quad i = 1, 2.$$

The multiplicative Schwarz is the iterative scheme

$$x^{(k+1)} = T x^{(k)} + v, \quad T = (I - P_2)(I - P_1),$$

where v is defined such that the scheme is **consistent**.

Multiplicative Schwarz method Formalism

Define

$$P_i = R_i^T A_i^{-1} R_i A, \quad A_i \equiv R_i A R_i^T, \quad i = 1, 2.$$

The multiplicative Schwarz is the iterative scheme

$$x^{(k+1)} = T x^{(k)} + v, \quad T = (I - P_2)(I - P_1),$$

where v is defined such that the scheme is **consistent**. Hence,

$$x - x^{(k+1)} = T^{k+1} (x - x_0),$$

and

$$||x - x^{(k+1)}|| \le ||T^{k+1}|| ||x - x_0||.$$

Is it convergent in our case?

Multiplicative Schwarz method

Experiment

Shishkin mesh and discretization

- 2 How to solve the linear system?
- 3 Multiplicative Schwarz method
- 4 Convergence analysis
- 5 Schwarz method as a preconditioner
- 6 Numerical examples

Exploiting the structure

$$\begin{split} \frac{\|x - x^{(k+1)}\|}{\|x - x_0\|} &\leq \|T^{k+1}\| \,.\\ \text{Using } T &= \begin{pmatrix} I - P_2)(I - P_1) \text{ we are able to show that} \\ T &= \begin{bmatrix} t_1 \\ 0 \dots 0 \\ \vdots \\ t_{n+1} \\ \vdots \\ t_{N-1} \end{bmatrix} = t \, e_{n+1}^T. \end{split}$$

Exploiting the structure

$$\begin{split} \frac{\|x - x^{(k+1)}\|}{\|x - x_0\|} &\leq \|T^{k+1}\| \,.\\ \text{Using } T &= (I - P_2)(I - P_1) \text{ we are able to show that} \\ T &= \begin{bmatrix} t_1 & t_1 & t_1 & t_1 \\ \vdots & t_{n+1} & t_{n+1} & t_{n+1} \\ \vdots & t_{n-1} & t_{n+1} & t_{n+1} \end{bmatrix} = t \, e_{n+1}^T. \end{split}$$

Therefore, $T^2 = t \, (e_{n+1}^T t) \, e_{n+1}^T = t_{n+1} T$, and
 $\|T^{k+1}\| = \|t_{n+1}\|^k \|T\| \,. \end{split}$

How to bound $|t_{n+1}|$, and ||T|| in a convenient norm $(|| \cdot ||_{\infty})$?

Convergence analysis Details

$$A = egin{bmatrix} A_H & & & & \ & & b_H & & \ \hline & & c & a & b & \ \hline & & & c_h & & \ & & & A_h & \ \end{bmatrix}.$$

Let $m \equiv n-1$, $\rho \equiv |t_{n+1}| \dots$ the convergence factor. Then,

$$ho = \left| rac{bb_H(A_H^{-1})_{m,m}}{a-cb_Hig(A_H^{-1}ig)_{m,m}}
ight| \left| rac{cc_h(A_h^{-1}ig)_{1,1}}{a-bc_hig(A_h^{-1}ig)_{1,1}}
ight|.$$

Convergence analysis Bounding $\left(A_{\scriptscriptstyle H}^{-1}\right)_{m,m}$ and $\left(A_{\scriptscriptstyle h}^{-1}\right)_{1,1}$

- A matrix $B = [b_{i,j}]$ is called a nonsingular *M*-matrix when
 - B is nonsingular,
 - $b_{i,i} > 0$ for all i, $b_{i,j} \le 0$ for all $i \ne j$,
 - and $B^{-1} \ge 0$ (elementwise).

Convergence analysis Bounding $\left(A_{\scriptscriptstyle H}^{-1}\right)_{m,m}$ and $\left(A_{\scriptscriptstyle h}^{-1}\right)_{1,1}$

A matrix $B = [b_{i,j}]$ is called a nonsingular *M*-matrix when

• B is nonsingular,

•
$$b_{i,i} > 0$$
 for all i , $b_{i,j} \le 0$ for all $i \ne j$,

• and $B^{-1} \ge 0$ (elementwise).

If A_H and A_h are nonsingular *M*-matrices, then using [Nabben 1999],

$$ig(A_H^{-1}ig)_{m,m} \le \min\left\{rac{1}{|b_H|},rac{1}{|c_H|}
ight\},\ ig(A_h^{-1}ig)_{1,1} \le \min\left\{rac{1}{|b_h|},rac{1}{|c_h|}
ight\}.$$

A sufficient condition: The sign conditions & irreducibly diagonal dominant \Rightarrow nonsingular *M*-matrix. [Meurant, 1996], [Hackbusch, 2010]

The upwind scheme

The matrices A_H and A_h are *M*-matrices, and we know that

$$\frac{\|e^{(k+1)}\|_{\infty}}{\|e^{(0)}\|_{\infty}} \le \rho^k \|T\|_{\infty}.$$

The upwind scheme

The matrices A_H and A_h are *M*-matrices, and we know that

$$\frac{\|e^{(k+1)}\|_{\infty}}{\|e^{(0)}\|_{\infty}} \le \rho^k \|T\|_{\infty}.$$

Theorem (the upwind scheme)

[Echeverría, Liesen, T., Szyld, 2016]

For the upwind scheme we have

$$\rho \leq \frac{\epsilon}{\epsilon + \alpha H} \leq \frac{\epsilon}{\epsilon + \frac{\alpha}{N}},$$

and

$$||T||_{\infty} \le \frac{\epsilon}{\epsilon + \alpha H}.$$

The central difference scheme

- A_h is still an *M*-matrix.
- If $\alpha H > 2\epsilon$, i.e. $b_H > 0$, then A_H is not an M-matrix
 - ... the most common situation from a practical point of view.

The central difference scheme

- A_h is still an *M*-matrix.
- If $\alpha H > 2\epsilon$, i.e. $b_H > 0$, then A_H is not an M-matrix
 - ... the most common situation from a practical point of view.
- Recall

$$\rho = \left| \frac{bb_{H}(A_{H}^{-1})_{m,m}}{a - cb_{H}(A_{H}^{-1})_{m,m}} \right| \left| \frac{cc_{h}(A_{h}^{-1})_{1,1}}{a - bc_{h}(A_{h}^{-1})_{1,1}} \right|$$

• How to bound $(A_H^{-1})_{m,m}$? ... results by [Usmani 1994]

٠

The central difference scheme

- A_h is still an *M*-matrix.
- If $\alpha H > 2\epsilon$, i.e. $b_H > 0$, then A_H is not an M-matrix
 - ... the most common situation from a practical point of view.

Recall

$$\rho = \left| \frac{bb_{H} (A_{H}^{-1})_{m,m}}{a - cb_{H} (A_{H}^{-1})_{m,m}} \right| \left| \frac{cc_{h} (A_{h}^{-1})_{1,1}}{a - bc_{h} (A_{h}^{-1})_{1,1}} \right|$$

- How to bound $(A_H^{-1})_{m,m}$? ... results by [Usmani 1994]
- We proved: If m = N/2 1 is even, then

$$b_H(A_H^{-1})_{m,m} \le \frac{1 - \left|\frac{b_H}{c_H}\right|^m}{\left|\frac{c_H}{b_H}\right| + \left|\frac{b_H}{c_H}\right|^m} < \frac{2m\epsilon}{\epsilon + \frac{\alpha H}{2}}$$

The central difference scheme

 A_h is *M*-matrix, if $\alpha H > 2\epsilon$, A_H is not an *M*-matrix.

Theorem (the central diff. scheme) [Echeverría, Liesen, T., Szyld, 2016]

Let m=N/2-1 be even, and let $\alpha H>2\epsilon.$ For the central differences we have

$$\rho < \frac{2m\epsilon}{\epsilon + \frac{\alpha H}{2}} < N \frac{\epsilon}{\epsilon + \frac{\alpha}{N}},$$
$$\|T\|_{\infty} < 2.$$

Thus, the error of the multiplicative Schwarz method satisfies

$$\frac{\|e^{(k+1)}\|_{\infty}}{\|e^{(0)}\|_{\infty}} < 2\left(\frac{2m\epsilon}{\epsilon + \frac{\alpha H}{2}}\right)^k$$

Remarks on diagonally scaled linear algebraic systems DAx = Db

The ill-conditioning can be avoided by diagonal scaling [Roos 1996]: Ax = b is multiplied from the left by

$$D = \begin{bmatrix} d_H I_m & & \\ & d & \\ \hline & & d_h I_m \end{bmatrix}$$

.

Remarks on diagonally scaled linear algebraic systems DAx = Db

The ill-conditioning can be avoided by diagonal scaling [Roos 1996]: Ax = b is multiplied from the left by

$$D = \begin{bmatrix} d_H I_m & & \\ & d & \\ \hline & & d_h I_m \end{bmatrix}$$

- Such a scaling **preserves** the **Toeplitz** structure and the *M*-**matrix** property of the submatrices.
- Analysis depends on these properties and on ratios between elements in the same row such as |b/a| and $|b_H/c_H|$. These ratios are invariant under diagonal scaling.

Remarks on diagonally scaled linear algebraic systems DAx = Db

The ill-conditioning can be avoided by diagonal scaling [Roos 1996]: Ax = b is multiplied from the left by

$$D = \begin{bmatrix} d_H I_m & | \\ \hline & d & \\ \hline & | & d_h I_m \end{bmatrix}$$

- Such a scaling **preserves** the **Toeplitz** structure and the *M*-**matrix** property of the submatrices.
- Analysis depends on these properties and on ratios between elements in the same row such as |b/a| and $|b_H/c_H|$. These ratios are invariant under diagonal scaling.
- Consequently, all **convergence bounds hold** for the multiplicative Schwarz method applied to DAx = Db.

Shishkin mesh and discretization

- 2 How to solve the linear system?
- 3 Multiplicative Schwarz method
- 4 Convergence analysis
- 5 Schwarz method as a preconditioner
- 6 Numerical examples

Schwarz method as a preconditioner

We have consistent scheme

$$x^{(k+1)} = T x^{(k)} + v.$$

Hence, x solves Ax = b and also "the **preconditioned** system"

$$(I-T)x = v.$$

Schwarz method as a preconditioner

We have consistent scheme

$$x^{(k+1)} = T x^{(k)} + v.$$

Hence, x solves Ax = b and also "the **preconditioned** system"

$$(I-T)x = v.$$

We can formally define a **preconditioner** M such

$$Ax = b \quad \Leftrightarrow M^{-1}Ax = M^{-1}b \quad \Leftrightarrow (I - T)x = v.$$

Clearly $M = A(I - T)^{-1}$.

Schwarz method as a preconditioner

We have consistent scheme

$$x^{(k+1)} = T x^{(k)} + v.$$

Hence, x solves Ax = b and also "the **preconditioned** system"

$$(I-T)x = v.$$

We can formally define a **preconditioner** M such

$$Ax = b \quad \Leftrightarrow M^{-1}Ax = M^{-1}b \quad \Leftrightarrow (I - T)x = v.$$

Clearly $M = A(I - T)^{-1}$. Then

$$\begin{aligned} x^{(k+1)} &= x^{(k)} + (I-T)(x-x^{(k)}) \\ &= x^{(k)} + M^{-1}r^{(k)}. \end{aligned}$$

- The multiplicative **Schwarz** method as well as **GMRES** applied to the preconditioned system obtain their approximations from **the same Krylov subspace**.
- In terms of the residual norm, the preconditioned GMRES will always converge faster than the multiplicative Schwarz.

- The multiplicative **Schwarz** method as well as **GMRES** applied to the preconditioned system obtain their approximations from **the same Krylov subspace**.
- In terms of the residual norm, the preconditioned GMRES will always converge faster than the multiplicative Schwarz.
- Moreover, in this case, the iteration matrix T has rank-one structure, and

$$\dim\left(\mathcal{K}_k(I-T,r_0)\right) \le 2.$$

• Therefore, GMRES converges in **at most 2 steps**, ... a motivation for more dimensional cases.

How to multiply by ${\cal T}$

Schwarz or preconditioned GMRES \rightarrow only multiply by T,

$$T = (I - P_2)(I - P_1), \qquad P_i = R_i^T (R_i A R_i^T)^{-1} R_i A,$$

i.e., to solve systems of the form $(m = n - 1 = \frac{N}{2} - 1)$

How to multiply by ${\boldsymbol{T}}$

Schwarz or preconditioned GMRES \rightarrow only multiply by T,

$$T = (I - P_2)(I - P_1), \qquad P_i = R_i^T (R_i A R_i^T)^{-1} R_i A,$$

i.e., to solve systems of the form $(m = n - 1 = \frac{N}{2} - 1)$

$$\begin{bmatrix} A_H & & \\ & & \\ \hline & & \\ \hline & & \\ \hline & c & a \end{bmatrix} \begin{bmatrix} y_{1:m} \\ \hline y_{m+1} \end{bmatrix} = \begin{bmatrix} z_{1:m} \\ \hline z_{m+1} \end{bmatrix}.$$

Using the Schur complement,

$$\left(A_{H} - \frac{b_{H}c}{a}e_{m}e_{m}^{T}\right)y_{1:m} = z_{1:m} - z_{m+1}\frac{b_{H}}{a_{H}}e_{m}.$$

Then apply Sherman-Morrison formula.

We need only to solve systems with A_H (Toeplitz)!

Shishkin mesh and discretization

- 2 How to solve the linear system?
- 3 Multiplicative Schwarz method
- 4 Convergence analysis
- 5 Schwarz method as a preconditioner

Numerical examples

Consider

$$-\epsilon u'' + u' = 1, \quad u(0) = 0, \quad u(1) = 0,$$

i.e.

$$\alpha = 1, \quad \beta = 0, \quad f(x) \equiv 1.$$

Choose N = 198, various values of ϵ .

	upwind		central differences	
ϵ	$ ho_{up}$	our bound	$ ho_{cd}$	our bound
10^{-8}	9.4×10^{-7}	9.9×10^{-7}	1.8×10^{-4}	3.9×10^{-4}
10^{-6}	9.4×10^{-5}	9.9×10^{-5}	1.8×10^{-2}	3.9×10^{-2}
10^{-4}	9.3×10^{-3}	9.8×10^{-3}	8.3×10^{-1}	3.8×10^{-0}

$$\rho_{up} < \frac{\epsilon}{\epsilon + \alpha H}, \qquad \rho_{cd} < \frac{2m\epsilon}{\epsilon + \frac{\alpha H}{2}}.$$

Numerical examples

Upwind, $\epsilon = 10^{-8}$

Numerical examples Upwind, $\epsilon = 10^{-4}$

Numerical examples

Central differences, $\epsilon=10^{-8}$

Numerical examples

Central differences, $\epsilon=10^{-4}$

• We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a **Shishkin mesh**.

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a **Shishkin mesh**.
- The **matrices** that arise from the upwind and the central difference schemes are nonsymmetric and **highly nonnormal**.

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a **Shishkin mesh**.
- The **matrices** that arise from the upwind and the central difference schemes are nonsymmetric and **highly nonnormal**.
- For the **upwind scheme**, we proved **rapid convergence** of the multiplicative Schwarz method in the most relevant case $N\epsilon < \alpha$.

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a **Shishkin mesh**.
- The **matrices** that arise from the upwind and the central difference schemes are nonsymmetric and **highly nonnormal**.
- For the **upwind scheme**, we proved **rapid convergence** of the multiplicative Schwarz method in the most relevant case $N\epsilon < \alpha$.
- The convergence for the central difference scheme is slower, but still rapid, when $N^2 \epsilon < \alpha$ and if N/2 1 is even.

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a **Shishkin mesh**.
- The **matrices** that arise from the upwind and the central difference schemes are nonsymmetric and **highly nonnormal**.
- For the **upwind scheme**, we proved **rapid convergence** of the multiplicative Schwarz method in the most relevant case $N\epsilon < \alpha$.
- The convergence for the central difference scheme is slower, but still rapid, when $N^2 \epsilon < \alpha$ and if N/2 1 is even.
- Thanks to the **rank-one structure** of *T*, the preconditioned GMRES converges in **two steps**.

- We considered finite difference discretizations of the 1D singularly-perturbed convection-diffusion equation posed on a **Shishkin mesh**.
- The **matrices** that arise from the upwind and the central difference schemes are nonsymmetric and **highly nonnormal**.
- For the **upwind scheme**, we proved **rapid convergence** of the multiplicative Schwarz method in the most relevant case $N\epsilon < \alpha$.
- The convergence for the central difference scheme is slower, but still rapid, when $N^2 \epsilon < \alpha$ and if N/2 1 is even.
- Thanks to the **rank-one structure** of *T*, the preconditioned GMRES converges in **two steps**.
- Inspired by 1D case (preconditioner, low-rank structure), we can study 2D case.

Related papers

- C. Echeverría, J. Liesen, P. Tichý, and D. Szyld, [Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on a Shishkin mesh, (2016), in preparation]
- J. Miller, E. O'Riordan, and G. Shishkin, [Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, 1996.]
- H-G. Roos, M. Stynes, L. Tobiska, [Robust Numerical Methods for Singularly Perturbed Differential Equations, second edition, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2008, 604 pp.]
- M. Stynes, [Steady-state convection-diffusion problems, Acta Numerica, 14 (2005), pp. 445–508.]

Thank you for your attention!