Max-min and min-max approximation problems for normal matrices

revisited

Petr Tichý
Czech Academy of Sciences
joint work with
Jörg Liesen
TU Berlin

March 25, 2014,
Berlin, Germany

GMRES

$\mathbf{A} x=b, \mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular, $b \in \mathbb{C}^{n}$, $x_{0}=\mathbf{0}$ and $\|b\|=1$ for simplicity.

GMRES computes $x_{k} \in \mathcal{K}_{k}(\mathbf{A}, b)$ such that $r_{k} \equiv b-\mathbf{A} x_{k}$ satisfies

$$
\begin{aligned}
\left\|r_{k}\right\| & =\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| & & \text { (GMRES) } \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| & & \text { (worst-case GMRES) } \\
& \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| & & \text { (ideal GMRES) }
\end{aligned}
$$

where $\pi_{k}=$ degree $\leq k$ polynomials with $p(0)=1$.

Two bounds on the GMRES residual norm

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

- They are equal if \mathbf{A} is normal.
[Greenbaum, Gurvits '94; Joubert '94].
- The inequality can be strict if \mathbf{A} is non-normal.
[Toh '97; Faber, Joubert, Knill, Manteuffel '96].

How to prove the equality for normal matrices?

If \mathbf{A} is normal, then

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

- [Joubert '94] Proof using analytic methods of optimization theory, for real or complex data, only in the GMRES context.
- [Greenbaum, Gurvits '94]: Proof based mostly on matrix theory, only for real data but in a more general form.
- Is there a straightforward proof that uses, e.g., known classical results of approximation theory?

Outline

(1) Normal matrices and classical approximation problems
(2) Best polynomial approximation for f on Γ
(3) Proof
(4) Connection to results by Greenbaum and Gurvits

Link to classical approximation problems

- \mathbf{A} is normal iff $\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{*}, \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I}$.
- $\Gamma \equiv\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is the set of eigenvalues of \mathbf{A}.
- For any function g defined on Γ denote

$$
\|g\|_{\Gamma} \equiv \max _{z \in \Gamma}|g(z)|
$$

- $p \in \pi_{k}$ means

$$
p(z)=1-\sum_{i=1}^{k} \alpha_{i} z^{i}
$$

- Then

$$
\begin{aligned}
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| & =\min _{p \in \pi_{k}}\left\|\mathbf{Q} p(\boldsymbol{\Lambda}) \mathbf{Q}^{*}\right\|=\min _{p \in \pi_{k}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right| \\
& =\min _{\alpha_{1}, \ldots, \alpha_{k}}\left\|1-\sum_{i=1}^{k} \alpha_{i} z^{i}\right\|_{\Gamma} .
\end{aligned}
$$

Generalization

- Instead of 1 we consider a general function f defined on Γ. Instead of $\left\{z^{i}\right\}_{i=1}^{k}$ we consider general basis functions φ_{i}.
We ask whether

$$
\max _{\|b\|=1} \min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A}) b-p(\mathbf{A}) b\|=\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

where \mathbf{A} is normal and p is of the form

$$
p(z)=\sum_{i=1}^{k} \alpha_{i} \varphi_{i}(z) \quad \in \quad \mathcal{P}_{k}
$$

- A comment on \mathbb{R} versus $\mathbb{C} \rightarrow$ coefficients α_{i}.
- As in the previous

$$
\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\|=\min _{p \in \mathcal{P}_{k}}\|f(z)-p(z)\|_{\Gamma}
$$

A polynomial of best approximation for f on Γ

Definition and notation

$p_{*} \in \mathcal{P}_{k}$ is a polynomial of best approximation for f on Γ when

$$
\left\|f-p_{*}\right\|_{\Gamma}=\min _{p \in \mathcal{P}_{k}}\|f-p\|_{\Gamma}
$$

For $p \in \mathcal{P}_{k}$, define

$$
\Gamma(p) \equiv\left\{z \in \Gamma:|f(z)-p(z)|=\|f-p\|_{\Gamma}\right\} .
$$

Characterization of best approximation for f on Γ

[Chebyshev, Berstein, de la Vallée Poussin, Haar, Remez, Zuhovickiĭ, Kolmogorov] [Rivlin, Shapiro '61], [Lorentz '86]

Characterization theorem (complex case)
$p_{*} \in \mathcal{P}_{k}$ is a polynomial of best approximation for f on Γ
if and only if
there exist ℓ points $\mu_{i} \in \Gamma\left(p_{*}\right)$ where $1 \leq \ell \leq 2 k+1$, and ℓ real numbers $\omega_{1}, \ldots, \omega_{\ell}>0$ with $\omega_{1}+\cdots+\omega_{\ell}=1$, such that

$$
\sum_{j=1}^{\ell} \omega_{j} \overline{p\left(\mu_{j}\right)}\left[f\left(\mu_{j}\right)-p_{*}\left(\mu_{j}\right)\right]=0, \quad \forall p \in \mathcal{P}_{k}
$$

Denote

$$
\delta \equiv\left\|f-p_{*}\right\|_{\Gamma}=\left|f\left(\mu_{j}\right)-p_{*}\left(\mu_{j}\right)\right|, \quad j=1, \ldots, \ell
$$

Proof I

It suffices to prove that

$$
\begin{aligned}
\max _{\|b\|=1} \min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A}) b-p(\mathbf{A}) b\| & \geq \min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\| \\
& =\min _{p \in \mathcal{P}_{k}}\|f(z)-p(z)\|_{\Gamma} .
\end{aligned}
$$

From the previous,

$$
0=\sum_{j=1}^{\ell} \omega_{j} \overline{p\left(\mu_{j}\right)}\left[f\left(\mu_{j}\right)-p_{*}\left(\mu_{j}\right)\right] \quad \forall p \in \mathcal{P}_{k}
$$

Let λ_{j} be numbered such that $\lambda_{j}=\mu_{j}, j=1, \ldots, \ell$. Define

$$
\xi \equiv\left[\sqrt{\omega_{1}}, \ldots, \sqrt{\omega_{\ell}}, 0, \ldots, 0\right]^{T} \quad \text { and } \quad w=\mathbf{Q} \xi
$$

Then

$$
\begin{aligned}
\sum_{j=1}^{\ell} \omega_{j} \overline{p\left(\mu_{j}\right)}\left[f\left(\mu_{j}\right)-p_{*}\left(\mu_{j}\right)\right] & =\xi^{H} p(\boldsymbol{\Lambda})^{H}\left[f(\boldsymbol{\Lambda})-p_{*}(\boldsymbol{\Lambda})\right] \xi \\
& =w^{H} p(\mathbf{A})^{H}\left[f(\mathbf{A})-p_{*}(\mathbf{A})\right] w
\end{aligned}
$$

Proof II

In other words,

$$
f(\mathbf{A}) w-p_{*}(\mathbf{A}) w \perp p(\mathbf{A}) w, \quad \forall p \in \mathcal{P}_{k}
$$

or, equivalently,

$$
\left\|f(\mathbf{A}) w-p_{*}(\mathbf{A}) w\right\|=\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A}) w-p(\mathbf{A}) w\|
$$

Moreover

$$
\begin{aligned}
\left\|f(\mathbf{A}) w-p_{*}(\mathbf{A}) w\right\|^{2} & =\left\|\left[f(\boldsymbol{\Lambda})-p_{*}(\boldsymbol{\Lambda})\right] \xi\right\|^{2} \\
& =\sum_{j=1}^{\ell} \xi_{j}^{2}\left|f\left(\mu_{j}\right)-p_{*}\left(\mu_{j}\right)\right|^{2} \\
& =\sum_{j=1}^{\ell} \omega_{j} \delta^{2}=\delta^{2} \\
& =\left\|f(\mathbf{A})-p_{*}(\mathbf{A})\right\|^{2}
\end{aligned}
$$

Proof III

In summary, for $p_{*} \in \mathcal{P}_{k}$ we have constructed $w \in \mathbb{C}^{n}$ such that

$$
\begin{aligned}
\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\| & =\left\|f(\mathbf{A})-p_{*}(\mathbf{A})\right\| \\
& =\left\|f(\mathbf{A}) w-p_{*}(\mathbf{A}) w\right\|^{2} \\
& =\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A}) w-p(\mathbf{A}) w\| \\
& \leq \max _{\|b\|=1} \min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A}) b-p(\mathbf{A}) b\| .
\end{aligned}
$$

The proof for complex \mathbf{A} is finished.

A note on the real case

- Assume that $\mathbf{A}, f(\mathbf{A})$ and $\varphi_{i}(\mathbf{A})$ are real. We look for a polynomial of a best approximation with real coefficients.
- Technical problem: A can have complex eigenvalues but we look for a real vector b that maximizes

$$
\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A}) b-p(\mathbf{A}) b\| .
$$

- Γ is a set of points that appear in complex conjugate pairs.
- This symmetry with respect to the real axes has been used to find a real b and to prove the equality [Liesen, T. 2013].

Results by Greenbaum and Gurvits, Horn and Johnson

Theorem

Let $\mathbf{A}_{0}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$ be normal matrices that commute. Then

$$
\max _{\|v\|=1} \min _{\alpha_{1}, \ldots, \alpha_{k}}\left\|\mathbf{A}_{0} v-\sum_{i=1}^{k} \alpha_{i} \mathbf{A}_{i} v\right\|=\min _{\alpha_{1}, \ldots, \alpha_{k}}\left\|\mathbf{A}_{0}-\sum_{i=1}^{k} \alpha_{i} \mathbf{A}_{i}\right\| .
$$

Theorem [Theorem 2.5.5, Horn, Johnson '90]
Commuting normal matrices can be simultaneously unitarily diagonalized, i.e., there exists a unitary \mathbf{U} so that

$$
\mathbf{U}^{H} \mathbf{A}_{i} \mathbf{U}=\mathbf{\Lambda}_{i}, \quad i=0,1, \ldots, k
$$

Connection to results by Greenbaum and Gurvits

Using the theorem by Horn and Johnson we can equivalently rewrite the problem

$$
\min _{\alpha_{1}, \ldots, \alpha_{k}}\left\|\mathbf{A}_{0}-\sum_{i=1}^{k} \alpha_{i} \mathbf{A}_{i}\right\|
$$

in our notation

$$
\min _{\alpha_{1}, \ldots, \alpha_{k}}\left\|f(\mathbf{A})-\sum_{i=1}^{k} \alpha_{i} \varphi_{i}(\mathbf{A})\right\|
$$

where \mathbf{A} is any diagonal matrix with distinct eigenvalues and f and φ_{i} are any functions satisfying

$$
f(\mathbf{A})=\boldsymbol{\Lambda}_{0}, \quad \varphi_{i}(\mathbf{A})=\boldsymbol{\Lambda}_{i}, \quad i=1, \ldots, k
$$

Summary

- Inspired by the convergence analysis of GMRES we formulated two general approximation problems involving normal matrices.
- We used a direct link between
- approximation problems involving normal matrices,
- classical approximation problems
and proved that

$$
\max _{\|b\|=1} \min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A}) b-p(\mathbf{A}) b\|=\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\| .
$$

- Our results
- represent a generalization of results by [Joubert '94],
- offer another point of view to [Greenbaum, Gurvits '94].

Related papers

- J. Liesen and P. TichÝ, [Max-min and min-max approximation problems for normal matrices revisited, submitted to ETNA (2013).]
- A. Greenbaum and L. Gurvits, [Max-min properties of matrix factor norms, SISC, 15 (1994), pp. 348-358.]
- W. Joubert, [A robust GMRES-based adaptive polynomial preconditioning algorithm for nonsymmetric linear systems, SISC, 15 (1994), pp. 427-439.]
- M. Bellalij, Y. SaAd, And H. Sadok, [Analysis of some Krylov subspace methods for normal matrices via approximation theory and convex optimization, ETNA, 33 (2008/09), pp. 17-30.]

Thank you for your attention!

