On matrix approximation problems that bound GMRES convergence

Petr Tichý
Czech Academy of Sciences
joint work with
Vance Faber and Jörg Liesen

September 20, Mat Triad 2013, Herzeg-Novi, Montenegro

Outline

(1) Introduction
2) Ideal GMRES
(3) Worst-case GMRES
(4) Ideal versus worst-case GMRES

Outline

(1) Introduction
(2) Ideal GMRES
(3) Worst-case GMRES
(4) Ideal versus worst-case GMRES

Bounding GMRES residual norm

$$
\begin{aligned}
& \mathbf{A} x=b, \mathbf{A} \in \mathbb{R}^{n \times n} \text { is nonsingular, } b \in \mathbb{R}^{n}, \\
& x_{0}=\mathbf{0} \text { and }\|b\|=1 \text { for simplicity, }\|\cdot\|=2 \text {-norm } .
\end{aligned}
$$

GMRES computes $x_{k} \in \mathcal{K}_{k}(\mathbf{A}, b)$ such that $r_{k} \equiv b-\mathbf{A} x_{k}$ satisfies

$$
\begin{aligned}
\left\|r_{k}\right\| & =\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| & & \text { (GMRES) } \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \equiv \mathcal{W}_{k}^{\mathbf{A}} & & \text { (worst-case GMRES) } \\
& \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| \equiv \mathcal{I}_{k}^{\mathbf{A}} & & \text { (ideal GMRES) }
\end{aligned}
$$

where $\pi_{k}=$ degree $\leq k$ polynomials with $p(0)=1$.

Questions

$$
\left\|r_{k}\right\| \leq \underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\mathcal{W}_{k}^{\mathbf{A}}} \leq \underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\mathcal{I}_{k}^{\mathbf{A}}}
$$

- Characterization of solutions? Understanding?
- Existence and uniqueness of the solution?
- Relationship between ideal and worst case GMRES?

Normal matrices

$$
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{*}, \quad \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I}
$$

- [Greenbaum, Gurvits '94; Joubert '94] showed:

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

- Which (known) approximation problem is solved?

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\min _{p \in \pi_{k}}\left\|\mathbf{Q} p(\mathbf{\Lambda}) \mathbf{Q}^{*}\right\|=\min _{p \in \pi_{k}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right|
$$

- Is the solution unique? Yes
- Studied in [Greenbaum '79; Liesen, T. '04]

Nonnormal matrices - Toh's example

$$
\left\|r_{k}\right\| \leq \underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\mathcal{W}_{k}^{\mathbf{A}}} \leq \underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\mathcal{I}_{k}^{\mathbf{A}}}
$$

Consider the 4 by 4 matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & \epsilon & & \\
& -1 & \epsilon^{-1} & \\
& & 1 & \epsilon \\
& & & -1
\end{array}\right], \quad \epsilon>0
$$

Then, for $k=3$,

$$
0 \stackrel{\epsilon \rightarrow 0}{\rightleftarrows} \mathcal{W}_{k}^{\mathrm{A}}<\mathcal{I}_{k}^{\mathbf{A}}=\frac{4}{5} .
$$

[Toh '97; another example in Faber, Joubert, Knill, Manteuffel '96]

Outline

(1) Introduction

(2) Ideal GMRES
(3) Worst-case GMRES
4. Ideal versus worst-case GMRES

Uniqueness

- Let A be a nonsingular matrix. Then the k th ideal GMRES polynomial that solves the problem

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

is unique.
[Greenbaum, Trefethen '94]

- Generalization of the uniqueness result to problems of the form

$$
\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

can be found in [Liesen, T. '09].

Matrix approximation problems in spectral norm

and characterization of Ideal GMRES

- Ideal GMRES is a special case of the problem

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|=\left\|\mathbf{B}-\mathbf{A}_{*}\right\|
$$

\mathbf{A}_{*} is called a spectral approximation of \mathbf{B} from \mathbb{A}.

- In our case,

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\min _{\alpha_{i} \in \mathbb{C}}\left\|\mathbf{I}-\sum_{j=1}^{k} \alpha_{j} \mathbf{A}^{j}\right\|
$$

i.e. $\mathbf{B}=\mathbf{I}, \mathbb{A}=\operatorname{span}\left\{\mathbf{A}, \ldots, \mathbf{A}^{k}\right\}$.

- General characterization by [Lau and Riha, 1981] and [Zieptak, 1993, 1996] \rightarrow based on Singer's theorem [Singer, 1970] (a generalization of the classical results of approximation theory to Banach spaces).

Characterization of Ideal GMRES

by Faber, Joubert, Knill, Manteuffel '96

Given a polynomial $q \in \pi_{k}$ and \mathbf{A}, define the set

$$
\Omega_{k}(q) \equiv\left\{\left[\begin{array}{c}
w^{*} q(\mathbf{A})^{*} \mathbf{A} w \\
\vdots \\
w^{*} q(\mathbf{A})^{*} \mathbf{A}^{k} w
\end{array}\right]: w \in \Sigma(q(\mathbf{A})),\|w\|=1\right\}
$$

where $\Sigma(\mathbf{B})$ is the span of maximal right singular vectors of \mathbf{B}.

Theorem
[Faber, Joubert, Knill, Manteuffel '96]
$p_{*} \in \pi_{k}$ is the k th ideal GMRES pol. of $\mathbf{A} \Longleftrightarrow \mathbf{0} \in \operatorname{cvx}\left(\Omega_{k}\left(p_{*}\right)\right)$.

Outline

(1) Introduction

(2) Ideal GMRES
(3) Worst-case GMRES
(4) Ideal versus worst-case GMRES

Worst-case GMRES

For a given k, there exists a unit norm vector b such that

$$
\left\|r_{k}\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\max _{\|v\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) v\|=\mathcal{W}_{k}^{\mathbf{A}}
$$

b ... a worst-case GMRES initial vector, the corresponding polynomial is a worst-case GMRES polynomial for \mathbf{A} and k.

Theorem
[Zavorin '02; Faber, Liesen, T. '13]
$\mathcal{W}_{k}^{\mathbf{A}}=\mathcal{W}_{k}^{\mathbf{A}^{T}}$ holds for all \mathbf{A} nad $k \geq 1$.
If b is a worst-case GMRES initial vector for \mathbf{A} and k, then

$$
b \xrightarrow{G M R E S(\mathbf{A}, b, k)} r_{k} \xrightarrow{G M R E S\left(\mathbf{A}^{T}, r_{k}, k\right)} s_{k}=\left(\mathcal{W}_{k}^{\mathbf{A}}\right)^{2} b
$$

The cross equality

Definition

We say that b satisfies the cross equality for \mathbf{A} and k if

$$
b \xrightarrow{G M R E S(\mathbf{A}, b, k)} r_{k} \xrightarrow{G M R E S\left(\mathbf{A}^{T}, r_{k}, k\right)} s_{k} \in \operatorname{span}\{b\}
$$

- A worst-case GMRES initial vector for \mathbf{A} and k satisfies the cross equality for \mathbf{A} and k.
- Satisfying the cross equality is not sufficient for b to be a worst-case initial vector.

Lemma [Faber, Liesen, T. '13]

If A is nonderogatory $(d(\mathbf{A})=n)$, then each b with $d(\mathbf{A}, b)=n$ satisfies the cross equality for \mathbf{A} and $n-1$.

Cross iteration algorithm

[Faber, Liesen, T. '13]

- For each \mathbf{A}, k, and b, the following seems to converge to a vector satisfying the cross equality for \mathbf{A} and k :

Initialize $b^{(0)}=b$.
For $j=1,2, \ldots$

- $r_{k}^{(j)}=\operatorname{GMRES}\left(\mathbf{A}, b^{(j-1)}, k\right)$
- $c^{(j-1)}=r_{k}^{(j)} /\left\|r_{k}^{(j)}\right\|$
- $s_{k}^{(j)}=\operatorname{GMRES}\left(\mathbf{A}^{T}, c^{(j-1)}, k\right)$
- $b^{(j)}=s_{k}^{(j)} /\left\|s_{k}^{(j)}\right\|$

Experiment with $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{11 \times 11}$, $k=5$, and four random b.

Figure illustrates:

$$
\left\|r_{k}^{(j)}\right\| \leq\left\|s_{k}^{(j)}\right\| \leq\left\|r_{k}^{(j+1)}\right\| \leq\left\|s_{k}^{(j+1)}\right\|
$$

No convergence to a worst-case vector.

Worst-case polynomials for \mathbf{A} and \mathbf{A}^{T}

Lemma

Let b be a worst-case GMRES initial vector for A and k with corresponding $p_{k} \in \pi_{k}$, so that $r_{k}=p_{k}(\mathbf{A}) b$.

- Then, by the cross equality, $r_{k} /\left\|r_{k}\right\|$ is a worst-case GMRES initial vector for \mathbf{A}^{T} and k.
- Moreover, $p_{k} \in \pi_{k}$ is the corresponding GMRES polynomial for \mathbf{A}^{T}, k and $r_{k} /\left\|r_{k}\right\|$.

This implies:

$$
p_{k}\left(\mathbf{A}^{T}\right) p_{k}(\mathbf{A}) b=\left(\mathcal{W}_{k}^{\mathbf{A}}\right)^{2} b
$$

i.e., b is a right singular vector of the matrix $p_{k}(\mathbf{A})$.

Worst-case GMRES polynomials need not be unique

Theorem

A worst-case GMRES polynomial for the Toh matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & \epsilon & & \\
& -1 & \epsilon^{-1} & \\
& & 1 & \epsilon \\
& & & -1
\end{array}\right], \quad \epsilon>0
$$

and $k=3$ is not unique.

In particular, for this \mathbf{A} and $k=3$, we have shown that

- if $p(z) \in \pi_{3}$ is a worst-case polynomial $\Rightarrow p(-z)$ as well,
- if $p(z) \in \pi_{3}$ is a worst-case polynomial, then $p(z) \neq p(-z)$.

Outline

(1) Introduction
 (2) Ideal GMRES
 (3) Worst-case GMRES

4 Ideal versus worst-case GMRES

Ideal versus worst-case GMRES

- $\mathcal{W}_{k}^{\mathrm{A}}=\mathcal{I}_{k}^{\mathrm{A}}$ iff a worst-case initial vector b is a maximal right singular vector of $p_{k}(\mathbf{A})$.
[Faber, Joubert, Knill, Manteuffel '96, T., Faber, Liesen, 2007]
- If $\Omega_{k}\left(p_{*}\right)$ is convex then $\mathcal{W}_{k}^{\mathbf{A}}=\mathcal{I}_{k}^{\mathbf{A}}$.
[Faber, Joubert, Knill, Manteuffel '96]
- $\mathcal{W}_{k}^{\mathrm{A}}=\mathcal{I}_{k}^{\mathrm{A}}$ iff

$$
\max _{v \in \mathbb{R}^{n} \backslash 0} \min _{c \in \mathbb{R}^{k}} F(c, v)=\min _{c \in \mathbb{R}^{k}} \max _{v \in \mathbb{R}^{n} \backslash 0} F(c, v)
$$

where

$$
F(c, v) \equiv \frac{\|v-K(v) c\|^{2}}{\|v\|^{2}}
$$

$K(v) \equiv\left[\mathbf{A} v, \mathbf{A}^{2} v, \ldots, \mathbf{A}^{k} v\right]$.
[Faber, Liesen, T. '13]

Summary

- Worst-case initial vectors satisfy the cross equality. This property is not sufficient for worst-case initial vectors.
- The worst-case GMRES problem is a nonlinear matrix approximation problem that can have multiple solutions.
- Worst-case initial vector b is a right singular vector of the corresponding GMRES matrix $p_{k}(\mathbf{A})$.
- $\mathcal{W}_{k}^{\mathrm{A}}=\mathcal{I}_{k}^{\mathrm{A}}$ iff
b is a maximal right singular vector of $p_{k}(\mathbf{A})$.
- There are many open questions concerning the theory and the computation of $\mathcal{W}_{k}^{\mathrm{A}}$.

Related papers

- V. Faber, J. Liesen and P. Tichý, [Properties of worst-case GMRES, accepted to SIMAX (2013).]
- J. Liesen and P. TichÝ, [On best approximations of polynomials in matrices in the matrix 2 -norm, SIMAX, 31 (2009), pp. 853-863.]
- K. C. Toh, [GMRES vs. ideal GMRES, SIMAX, 18 (1997), pp. 30-36.]
- V. Faber, W. Joubert, E. Knill, and T. Manteuffel, [Minimal residual method stronger than polynomial preconditioning, SIMAX, 17 (1996), pp. 707-729.]
- A. Greenbaum and L. N. Trefethen, [Gmres/CR and Arnoldi/Lanczos as matrix approximation problems, SISC, 15 (1994), pp. 359-368.]

Thank you for your attention!

