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Problem formulation

Consider a system

Ax = b

where A ∈ Rn×n is symmetric, positive definite.

Without loss of generality, ‖b‖ = 1 , x0 = 0 .
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The conjugate gradient method

input A, b
r0 = b, p0 = r0

for k = 1, 2, . . . do

γk−1 =
rT

k−1rk−1

pT
k−1A pk−1

xk = xk−1 + γk−1pk−1

rk = rk−1 − γk−1A pk−1

δk =
rT

k rk

rT
k−1rk−1

pk = rk + δkpk−1

test quality of xk

end for
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Mathematical properties of CG
optimality property

CG → xk, rk, pk

The kth Krylov subspace,

Kk(A, b) ≡ span{b, Ab, . . . , A
k−1b} .

Residuals r0, . . . , rk−1 form an orthogonal basis of Kk(A, b).

The CG approximation xk is optimal

‖x − xk‖A = min
y∈Kk

‖x − y‖A .
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A practically relevant question
How to measure quality of an approximation?

using residual information,

– normwise backward error,
– relative residual norm.
“Using of the residual vector rk as a measure of the “goodness” of

the estimate xk is not reliable” [Hestenes & Stiefel 1952]
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A practically relevant question
How to measure quality of an approximation?

using residual information,

– normwise backward error,
– relative residual norm.
“Using of the residual vector rk as a measure of the “goodness” of

the estimate xk is not reliable” [Hestenes & Stiefel 1952]

using error estimates,

– estimate of the A-norm of the error,
– estimate of the Euclidean norm of the error.
“The function (x − xk, A(x − xk)) can be used as a measure of the

“goodness” of xk as an estimate of x.” [Hestenes & Stiefel 1952]

The (relative) A-norm of the error plays an important role
in stopping criteria in many problems [Deuflhard 1994], [Arioli 2004],
[Jiránek, Strakoš, Vohralík 2006]

5



Outline

1 CG and the Lanczos algorithm

2 CG, Lanczos and Quadrature

3 How to compute the estimates?

4 Experiments and questions
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The Lanczos algorithm
Let A be symmetric, compute orthonormal basis of Kk(A, b)

input A, b
v1 = b/‖b||, δ1 = 0
β0 = 0, v0 = 0
for k = 1, 2, . . . do

αk = vT
k Avk

w = Avk − αkvk − βk−1vk−1

βk = ‖w‖
vk+1 = w/βk

end for
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The Lanczos algorithm
Let A be symmetric, compute orthonormal basis of Kk(A, b)

input A, b
v1 = b/‖b||, δ1 = 0
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end for

Tk


α1 β1

β1
. . .

. . . βk−1

βk−1 αk
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The Lanczos algorithm
Let A be symmetric, compute orthonormal basis of Kk(A, b)

input A, b
v1 = b/‖b||, δ1 = 0
β0 = 0, v0 = 0
for k = 1, 2, . . . do

αk = vT
k Avk

w = Avk − αkvk − βk−1vk−1

βk = ‖w‖
vk+1 = w/βk

end for

Tk


α1 β1

β1
. . .

. . . βk−1

βk−1 αk




The Lanczos algorithm can be represented by

AVk = VkTk + βkvk+1eT
k , V

∗
kVk = I .
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CG versus Lanczos
Let A be symmetric, positive definite

The CG approximation is the given by

xk = Vk yk where Tk yk = ‖b‖e1 .

It holds that

vk+1 = (−1)k rk

‖rk‖ , Tk = LkDkL
T
k ,

where

Lk ≡




1
√

δ1
. . .
. . .

. . .√
δk−1 1




, Dk ≡




γ−1
0

. . .
. . .

γ−1
k−1




.
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CG versus Lanczos
Summary

Both algorithms generate an orthogonal basis of the Krylov
subspace Kk(A, b).

Lanczos generates an orthonormal basis v1, . . . , vk using
a three-term recurrence → Tk.

CG generates an orthogonal basis r0, . . . , rk−1 using
a coupled two-term recurrence → Tk = LkDkL

T
k .

It holds that
vk+1 = (−1)k rk

‖rk‖ .
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CG, Lanczos and Gauss quadrature
Overview

CG, Lanczos,
algorithms

Gauss Quadrature
nodes, weights

Orthogonal polynomials
Jacobi matrices
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CG, Lanczos and Gauss quadrature
Corresponding formulas

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

∫ ξ

ζ
f(λ) dω(λ) =

k∑

i=1

ω
(k)
i f(θ

(k)
i ) + Rk[f ] .

Tk . . . Jacobi matrix, θ
(k)
i . . . eigenvalues of Tk, ω

(k)
i . . . scaled and

squared first components of the normalized eigenvectors of Tk.
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At any iteration step k, CG (implicitly) determines weights and
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f(λ) dω(λ) =
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(k)
i f(θ

(k)
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Tk . . . Jacobi matrix, θ
(k)
i . . . eigenvalues of Tk, ω

(k)
i . . . scaled and

squared first components of the normalized eigenvectors of Tk.

f(λ) ≡ λ−1 . Lanczos-related quantities:
(
T

−1
n

)
1,1

=
(
T
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k

)
1,1

+ Rk[λ−1].
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CG, Lanczos and Gauss quadrature
Corresponding formulas

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

∫ ξ

ζ
f(λ) dω(λ) =

k∑

i=1

ω
(k)
i f(θ

(k)
i ) + Rk[f ] .

Tk . . . Jacobi matrix, θ
(k)
i . . . eigenvalues of Tk, ω

(k)
i . . . scaled and

squared first components of the normalized eigenvectors of Tk.

f(λ) ≡ λ−1 . Lanczos-related quantities:
(
T

−1
n

)
1,1

=
(
T

−1
k

)
1,1

+ Rk[λ−1].

CG-related quantities

‖x‖2
A =

k−1∑

j=0

γj‖rj‖2 + ‖x − xk‖2
A .
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Gauss-Radau quadrature
More general quadrature formulas

∫ ξ

ζ
f dω(λ) =

k∑

i=1

wif (νi) +
m∑

j=1

w̃jf(ν̃j) + Rk[f ],

the weights [wi]
k
i=1, [w̃j ]mj=1 and the nodes [νi]

k
i=1 are unknowns,

[ν̃j ]mj=1 are prescribed outside the open integration interval.
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Gauss-Radau quadrature
More general quadrature formulas

∫ ξ

ζ
f dω(λ) =

k∑

i=1

wif (νi) +
m∑

j=1

w̃jf(ν̃j) + Rk[f ],

the weights [wi]
k
i=1, [w̃j ]mj=1 and the nodes [νi]

k
i=1 are unknowns,

[ν̃j ]mj=1 are prescribed outside the open integration interval.

m = 1: Gauss-Radau quadrature. Algebraically: Given µ ≡ ν̃1,
find α̃k+1 so that µ is an eigenvalue of the extended matrix

T̃k+1 =




α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk βk

βk α̃k+1




.

Quadrature for f(λ) = λ−1 is given by
(
T̃

−1
k+1

)
1,1

.
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Quadrature formulas
Golub - Meurant - Strakoš approach

Quadrature formulas for f(λ) = λ−1 take the form

(
T

−1
n

)
1,1

=
(
T

−1
k

)
1,1

+ R(G)
k ,

(
T

−1
n

)
1,1

=
(
T̃

−1
k

)
1,1

+ R(R)
k ,

and R(G)
k > 0 while R(R)

k < 0 if µ ≤ λmin.
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Quadrature formulas
Golub - Meurant - Strakoš approach

Quadrature formulas for f(λ) = λ−1 take the form

(
T

−1
n

)
1,1

=
(
T

−1
k

)
1,1

+ R(G)
k ,

(
T

−1
n

)
1,1

=
(
T̃

−1
k

)
1,1

+ R(R)
k ,

and R(G)
k > 0 while R(R)

k < 0 if µ ≤ λmin. Equivalently

‖x‖2
A = τk + ‖x − xk‖2

A ,

‖x‖2
A = τ̃k + R(R)

k .

where τk ≡
(
T

−1
k

)
1,1

, τ̃k ≡
(
T̃

−1
k

)
1,1

.

[Golub & Meurant 1994, 1997, 2010, Golub & Strakoš 1994]
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Idea of estimating the A-norm of the error

Consider two quadrature rules at steps k and k + d, d > 0,

‖x‖2
A = τk + ‖x − xk‖2

A ,

‖x‖2
A = τ̂k+d + R̂k+d . (1)
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Gauss quadrature: R̂k+d = R(G)
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Idea of estimating the A-norm of the error

Consider two quadrature rules at steps k and k + d, d > 0,

‖x‖2
A = τk + ‖x − xk‖2

A ,

‖x‖2
A = τ̂k+d + R̂k+d . (1)

Then
‖x − xk‖2

A = τ̂k+d − τk + R̂k+d .

Gauss quadrature: R̂k+d = R(G)
k+d > 0 → lower bound,

Radau quadrature: R̂k+d = R(R)
k+d < 0 → upper bound.

How to compute efficiently

τ̂k+d − τk ?
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Outline

1 CG and the Lanczos algorithm

2 CG, Lanczos and Quadrature

3 How to compute the estimates?

4 Experiments and questions
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How to compute τ̂k+d − τk?

For numerical reasons, it is not good to compute explicitly τk,
τ̂k+d, and subtract .
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How to compute τ̂k+d − τk?

For numerical reasons, it is not good to compute explicitly τk,
τ̂k+d, and subtract .

Instead, we use the formula,

τ̂k+d − τk =
k+d−2∑

j=k

(τj+1 − τj) + (τ̂j+d − τj+d−1)

≡
k+d−2∑

j=k

∆j + ∆̂k+d−1 ,

and update the ∆’s without subtraction. Recall that

∆j =
(
T

−1
j+1

)
1,1

−
(
T

−1
j

)
1,1

,

∆̂k+d−1 =
(
T̂

−1
k+d

)
1,1

−
(
T

−1
k+d−1

)
1,1

.
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Golub and Meurant approach

[Golub & Meurant 1994, 1997]: Use tridiagonal matrices,

CG → Tk → Tk−µI → T̃k
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Compute the ∆’s,

∆k−1 ≡
(
T

−1
k

)
1,1

−
(
T

−1
k−1

)
1,1

,

∆
(µ)
k ≡

(
T̃

−1
k+1

)
1,1

−
(
T

−1
k

)
1,1

.
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Golub and Meurant approach

[Golub & Meurant 1994, 1997]: Use tridiagonal matrices,

CG → Tk → Tk−µI → T̃k

Compute the ∆’s,

∆k−1 ≡
(
T

−1
k

)
1,1

−
(
T

−1
k−1

)
1,1

,

∆
(µ)
k ≡

(
T̃

−1
k+1

)
1,1

−
(
T

−1
k

)
1,1

.

Use the formulas

‖x − xk‖2
A =

k+d−1∑

j=k

∆j + ‖x − xk+d‖2
A ,

‖x − xk‖2
A =

k+d−2∑

j=k

∆j + ∆
(µ)
k+d−1 + R(R)

k+d .
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CGQL (Conjugate Gradients and Quadrature via Lanczos)

input A, b, x0, µ
r0 = b − Ax0, p0 = r0

δ0 = 0, γ−1 = 1, c1 = 1, β0 = 0, d0 = 1, α̃
(µ)
1 = µ,

for k = 1, . . . , until convergence do

CG-iteration (k)

αk =
1

γk−1
+

δk−1

γk−2
, β2

k =
δk

γ2
k−1

dk = αk − β2
k−1

dk−1
, ∆k−1 = ‖r0‖2 c2

k

dk
,

α̃
(µ)
k+1 = µ +

β2
k

αk − α̃
(µ)
k

,

∆
(µ)
k = ‖r0‖2 β2

kc2
k

dk

(
α̃

(µ)
k+1dk − β2

k

) , c2
k+1 =

β2
kc2

k

d2
k

Estimates(k,d)
end for
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Our approach

[Meurant & T. 2012]

We use tridiagonal matrices only implicitly.

CG generates LDLT factorization of Tk.

Update LDLT factorizations of the tridiagonal matrices

T̃k

Quite complicated algebraic manipulations, but, in the end,

we get very simple formulas for updating ∆k−1 and ∆
(µ)
k .
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Our approach

[Meurant & T. 2012]

We use tridiagonal matrices only implicitly.

CG generates LDLT factorization of Tk.

Update LDLT factorizations of the tridiagonal matrices

T̃k

Quite complicated algebraic manipulations, but, in the end,

we get very simple formulas for updating ∆k−1 and ∆
(µ)
k .

This idea can be used also for other types of quadratures
(Gauss-Lobatto, Anti-Gauss).
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CGQ (Conjugate Gradients and Quadrature)

[Meurant & T. 2012]

input A, b, x0, µ,
r0 = b − Ax0, p0 = r0

∆
(µ)
0 = ‖r0‖2

µ
,

for k = 1, . . . , until convergence do

CG-iteration(k)

∆k−1 = γk−1‖rk−1‖2,

∆
(µ)
k =

‖rk‖2
(
∆

(µ)
k−1 − ∆k−1

)

µ
(
∆

(µ)
k−1 − ∆k−1

)
+ ‖rk‖2

Estimates(k,d)
end for
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Outline

1 CG and the Lanczos algorithm

2 CG, Lanczos and Quadrature

3 How to compute the estimates?

4 Experiments and questions
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Practically relevant questions

The estimation is based on formulas

‖x − xk‖2
A =

k+d−1∑

j=k

∆j + ‖x − xk+d‖2
A

‖x − xk‖2
A =

k+d−2∑

j=k

∆j + ∆
(µ)
k+d−1 + R(R)

k+d

We are able to compute ∆j and ∆
(µ)
j almost for free.
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Practically relevant questions

The estimation is based on formulas

‖x − xk‖2
A =

k+d−1∑

j=k

∆j + ‖x − xk+d‖2
A

‖x − xk‖2
A =

k+d−2∑

j=k

∆j + ∆
(µ)
k+d−1 + R(R)

k+d

We are able to compute ∆j and ∆
(µ)
j almost for free.

Practically relevant questions:

What happens in finite precision arithmetic ?

How to choose d ?

How to choose µ ?
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Finite precision arithmetic
CG behavior

Orthogonality is lost, convergence is delayed!

0 20 40 60 80 100 120
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

(E)   || x−x
j
 ||

A

(FP) || x−x
j
 ||

A

(FP) || I−VT
j
V

j
 ||

 F

Identities need not hold in finite precision arithmetic!
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Rounding error analysis

Lower bound [Strakoš & T. 2002, 2005]: The equality

‖x − xk‖2
A =

k+d−1∑

j=k

∆j + ‖x − xk+d‖2
A

holds (up to a small inaccuracy) also in finite precision
arithmetic for computed vectors and coefficients.

25



Rounding error analysis

Lower bound [Strakoš & T. 2002, 2005]: The equality

‖x − xk‖2
A =

k+d−1∑

j=k

∆j + ‖x − xk+d‖2
A

holds (up to a small inaccuracy) also in finite precision
arithmetic for computed vectors and coefficients.

Upper bound: There is no rounding error analysis of

‖x − xk‖2
A =

k+d−2∑

j=k

∆j + ∆
(µ)
k+d−1 + R(R)

k+d .

25



The choice of d - Experiment 1
Strakos matrix, n = 48, λ1 = 0.1, λn = 1000, ρ = 0.9, d = 4
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exact error
Gauss lower bound
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The choice of d - Experiment 2
R. Kouhia: Cylindrical shell (Matrix Market), matrix s3dkt3m2

PCG, κ(A) = 3.62e + 11 , n = 90499 , d = 200 , cholinc(A, 0) .

0 500 1000 1500 2000 2500 3000
10

−12

10
−11
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−10
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−9

10
−8
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−6
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true residual norm
normwise backward error
A−norm of the error
estimate
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The choice of d

‖x − xk‖2
A =

k+d−1∑

j=k

∆j + ‖x − xk+d‖2
A

We get a tight lower bound if

‖x − xk‖2
A ≫ ‖x − xk+d‖2

A .
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A =
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j=k

∆j + ‖x − xk+d‖2
A

We get a tight lower bound if

‖x − xk‖2
A ≫ ‖x − xk+d‖2

A .

How to detect a reasonable decrease of the A-norm od the error?

Theoretically, one could use the upper bound,

‖x − xk+d‖2
A

‖x − xk‖2
A

≤
∆

(µ)
k+d∑k+d−1

j=k ∆j

< tol .
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The choice of d

‖x − xk‖2
A =

k+d−1∑

j=k

∆j + ‖x − xk+d‖2
A

We get a tight lower bound if

‖x − xk‖2
A ≫ ‖x − xk+d‖2

A .

How to detect a reasonable decrease of the A-norm od the error?

Theoretically, one could use the upper bound,

‖x − xk+d‖2
A

‖x − xk‖2
A

≤
∆

(µ)
k+d∑k+d−1

j=k ∆j

< tol .

But, can we trust the upper bound?
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The choice of µ, upper bound, exact arithmetic
Strakos matrix, n = 48, λ1 = 0.1, λn = 1000, ρ = 0.9, d = 1
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10
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The choice of µ, upper bound, finite precision arithmetic
Strakos matrix, n = 48, λ1 = 0.1, λn = 1000, ρ = 0.9, d = 1
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Numerical troubles with the upper bound

Given µ, we look for α̃k+1 (explicitly or implicitly) so that µ is an
eigenvalue of the extended matrix

T̃k+1 =




α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk βk

βk α̃k+1




.

31



Numerical troubles with the upper bound

Given µ, we look for α̃k+1 (explicitly or implicitly) so that µ is an
eigenvalue of the extended matrix

T̃k+1 =




α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk βk

βk α̃k+1




.

To find such a α̃k+1, we need to solve the system

(Tk − µI)y = ek .

If µ is close to the smallest eigenvalue of Tk, we can get into
numerical troubles!
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Conclusions and questions

The upper bound as well as the lower bound on the A-norm
of the error can be computed in a simple way.
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not always numerically stable.

µ is far from λ1 → overestimation,
µ is close to λ1 → numerical troubles.
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Conclusions and questions

The upper bound as well as the lower bound on the A-norm
of the error can be computed in a simple way.
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µ is close to λ1 → numerical troubles.

The estimation of the A-norm of the error should be based

on the numerical stable lower bound.

How to detect a reasonable decrease of the A-norm of the
error? (How to choose d adaptively?).

Is there any way how to involve the upper bound?
Understanding of numerical behaviour of the upper bound?
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Thank you for your attention!
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