On best approximations of matrix polynomials

Petr Tichý
joint work with
Jörg Liesen
Institute of Computer Science,
Academy of Sciences of the Czech Republic

February 2-6, 2009
Institute of Geonics, Ostrava
Seminar on Numerical Analysis (SNA) 2009

A classical problem of approximation theory

Best approximation by polynomials

$$
\min _{p \in \mathcal{P}_{m}(K)}\|f(z)-p(z)\|
$$

where f is a given (nice) function, $K \subset \mathbb{C}$ is compact, \mathcal{P}_{m} is s the set of polynomials of degree at most m.

A classical problem of approximation theory

Best approximation by polynomials

$$
\min _{p \in \mathcal{P}_{m}(K)}\|f(z)-p(z)\|
$$

where f is a given (nice) function, $K \subset \mathbb{C}$ is compact, \mathcal{P}_{m} is sthe set of polynomials of degree at most m.

Such problems have been studied since the 1850s; numerous results on existence, uniqueness and rate of convergence for $m \rightarrow \infty$.

Best approximation results can be used for bounding and/or estimating "almost best" approximations.

Matrix function best approximation problem

We consider the matrix approximation problem

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

$\|\cdot\|$ is the spectral norm (matrix 2-norm), $\mathbf{A} \in \mathbb{C}^{n \times n}, f$ is analytic in neighborhood of A's spectrum.

Matrix function best approximation problem

We consider the matrix approximation problem

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

$\|\cdot\|$ is the spectral norm (matrix 2-norm), $\mathbf{A} \in \mathbb{C}^{n \times n}, f$ is analytic in neighborhood of A's spectrum.

Well known: $f(\mathbf{A})=p_{f}(\mathbf{A})$ for a polynomial p_{f} depending on values and possibly derivatives of f on A's spectrum.

Without loss of generality we assume that f is a given polynomial.

Matrix function best approximation problem

We consider the matrix approximation problem

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

$\|\cdot\|$ is the spectral norm (matrix 2-norm), $\mathbf{A} \in \mathbb{C}^{n \times n}, f$ is analytic in neighborhood of A's spectrum.

Well known: $f(\mathbf{A})=p_{f}(\mathbf{A})$ for a polynomial p_{f} depending on values and possibly derivatives of f on A's spectrum.

Without loss of generality we assume that f is a given polynomial.
Does this problem have a unique solution $p_{*} \in \mathcal{P}_{m}$?

Ideal Arnoldi approximation problem

$$
\min _{p \in \mathcal{M}_{m+1}}\|p(\mathbf{A})\|=\min _{p \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1}-p(\mathbf{A})\right\|
$$

where \mathcal{M}_{m+1} is the class of monic polynomials of degree $m+1$, \mathcal{P}_{m} is the class of polynomials of degree at most m.

Ideal Arnoldi approximation problem

$$
\min _{p \in \mathcal{M}_{m+1}}\|p(\mathbf{A})\|=\min _{p \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1}-p(\mathbf{A})\right\|
$$

where \mathcal{M}_{m+1} is the class of monic polynomials of degree $m+1$, \mathcal{P}_{m} is the class of polynomials of degree at most m.

- Introduced in [Greenbaum and Trefethen, 1994], paper contains uniqueness result (\rightarrow story of the proof).
- The unique polynomial that solves the problem is called the $(m+1)$ st ideal Arnoldi polynomial of \mathbf{A}, or the $(m+1)$ st Chebyshev polynomial of \mathbf{A}.
- Some work on these polynomials in [Toh PhD thesis, 1996], [Toh and Trefethen, 1998], [Trefethen and Embree, 2005].

Outline

(1) General matrix approximation problems
(2) Formulation of matrix polynomial approximation problems
(3) Uniqueness results

Outline

(1) General matrix approximation problems

2 Formulation of matrix polynomial approximation problems
(3) Uniqueness results

General matrix approximation problems

Given

- m linearly independent matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{m} \in \mathbb{C}^{n \times n}$,
- $\mathbb{A} \equiv \operatorname{span}\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{m}\right\}$,
- $\mathbf{B} \in \mathbb{C}^{n \times n} \backslash \mathbb{A}$,
- $\|\cdot\|$ is a matrix norm.

Consider the best approximation problem

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

General matrix approximation problems

Given

- m linearly independent matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{m} \in \mathbb{C}^{n \times n}$,
- $\mathbb{A} \equiv \operatorname{span}\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{m}\right\}$,
- $\mathbf{B} \in \mathbb{C}^{n \times n} \backslash \mathbb{A}$,
- $\|\cdot\|$ is a matrix norm.

Consider the best approximation problem

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

This problem has a unique solution if $\|\cdot\|$ is strictly convex. [see, e.g., Sreedharan, 1973]

Strictly convex norms

The norm $\|\cdot\|$ is strictly convex if for all \mathbf{X}, \mathbf{Y},

$$
\|\mathbf{X}\|=\|\mathbf{Y}\|=1, \quad\|\mathbf{X}+\mathbf{Y}\|=2 \quad \Rightarrow \quad \mathbf{X}=\mathbf{Y}
$$

Strictly convex norms

The norm $\|\cdot\|$ is strictly convex if for all \mathbf{X}, \mathbf{Y},

$$
\|\mathbf{X}\|=\|\mathbf{Y}\|=1, \quad\|\mathbf{X}+\mathbf{Y}\|=2 \quad \Rightarrow \quad \mathbf{X}=\mathbf{Y}
$$

Which matrix norms are strictly convex?
Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ be singular values of \mathbf{X} and $1 \leq p \leq \infty$.
The c_{p}-norm: $\quad\|\mathbf{X}\|_{p} \equiv\left(\sum_{i=1}^{n} \sigma_{i}^{p}\right)^{1 / p}$.

- $p=2 \ldots$ Frobenius norm,
- $p=\infty \ldots$ spectral norm, matrix 2-norm, $\|\mathbf{X}\|_{\infty}=\sigma_{1}$,
- $p=1 \ldots$ trace (nuclear) norm.

Strictly convex norms

The norm $\|\cdot\|$ is strictly convex if for all \mathbf{X}, \mathbf{Y},

$$
\|\mathbf{X}\|=\|\mathbf{Y}\|=1, \quad\|\mathbf{X}+\mathbf{Y}\|=2 \quad \Rightarrow \quad \mathbf{X}=\mathbf{Y}
$$

Which matrix norms are strictly convex?
Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ be singular values of \mathbf{X} and $1 \leq p \leq \infty$.
The c_{p}-norm: $\quad\|\mathbf{X}\|_{p} \equiv\left(\sum_{i=1}^{n} \sigma_{i}^{p}\right)^{1 / p}$.

- $p=2 \ldots$. Frobenius norm,
- $p=\infty \ldots$ spectral norm, matrix 2-norm, $\|\mathbf{X}\|_{\infty}=\sigma_{1}$,
- $p=1 \ldots$ trace (nuclear) norm.

Theorem. If $1<p<\infty$ then the c_{p}-norm is strictly convex.

Spectral norm (matrix 2-norm)

A useful matrix norm in many applications: spectral norm

$$
\|\mathbf{X}\| \equiv \sigma_{1}
$$

Spectral norm (matrix 2-norm)

A useful matrix norm in many applications: spectral norm

$$
\|\mathbf{X}\| \equiv \sigma_{1}
$$

This norm is not strictly convex:

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{I} & \\
& \varepsilon
\end{array}\right], \quad \mathbf{Y}=\left[\begin{array}{ll}
\mathbf{I} & \\
& \delta
\end{array}\right], \quad \varepsilon, \delta \in\langle 0,1\rangle
$$

Then we have, for each $\varepsilon, \delta \in\langle 0,1\rangle$,

$$
\|\mathbf{X}\|=\|\mathbf{Y}\|=1 \quad \text { and } \quad\|\mathbf{X}+\mathbf{Y}\|=2
$$

but if $\varepsilon \neq \delta$ then $\mathbf{X} \neq \mathbf{Y}$.

Spectral norm (matrix 2-norm)

A useful matrix norm in many applications: spectral norm

$$
\|\mathbf{X}\| \equiv \sigma_{1}
$$

This norm is not strictly convex:

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{I} & \\
& \varepsilon
\end{array}\right], \quad \mathbf{Y}=\left[\begin{array}{ll}
\mathbf{I} & \\
& \delta
\end{array}\right], \quad \varepsilon, \delta \in\langle 0,1\rangle
$$

Then we have, for each $\varepsilon, \delta \in\langle 0,1\rangle$,

$$
\|\mathbf{X}\|=\|\mathbf{Y}\|=1 \quad \text { and } \quad\|\mathbf{X}+\mathbf{Y}\|=2
$$

but if $\varepsilon \neq \delta$ then $\mathbf{X} \neq \mathbf{Y}$.
Consequently: Best approximation problems in the spectral norm are not guaranteed to have a unique solution.

Matrix approximation problems in spectral norm

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|=\left\|\mathbf{B}-\mathbf{A}_{*}\right\|
$$

$\mathbf{A}_{*} \in \mathbb{A}$ achieving the minimum is called a spectral approximation of \mathbf{B} from the subspace \mathbb{A}.

Open question: When does this problem have a unique solution?

Matrix approximation problems in spectral norm

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|=\left\|\mathbf{B}-\mathbf{A}_{*}\right\|
$$

$\mathbf{A}_{*} \in \mathbb{A}$ achieving the minimum is called a spectral approximation of \mathbf{B} from the subspace \mathbb{A}.

Open question: When does this problem have a unique solution?

Ziettak's sufficient condition

Theorem [Ziętak, 1993]. If the residual matrix $\mathbf{B}-\mathbf{A}_{*}$ has an n-fold maximal singular value, then the spectral approximation \mathbf{A}_{*} of \mathbf{B} from the subspace \mathbb{A} is unique.

Matrix approximation problems in spectral norm

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|=\left\|\mathbf{B}-\mathbf{A}_{*}\right\|
$$

$\mathbf{A}_{*} \in \mathbb{A}$ achieving the minimum is called a spectral approximation of \mathbf{B} from the subspace \mathbb{A}.

Open question: When does this problem have a unique solution?

Ziettak's sufficient condition

Theorem [Ziętak, 1993]. If the residual matrix $\mathbf{B}-\mathbf{A}_{*}$ has an n-fold maximal singular value, then the spectral approximation \mathbf{A}_{*} of \mathbf{B} from the subspace \mathbb{A} is unique.

Is this sufficient condition satisfied, e.g., for the ideal Arnoldi approximation problem?

General characterization of spectral approximations

General characterization by [Lau and Riha, 1981] and [Zietak, 1993, 1996] \rightarrow based on the Singer's theorem [Singer, 1970].

General characterization of spectral approximations

General characterization by [Lau and Riha, 1981] and [Zietak, 1993, 1996] \rightarrow based on the Singer's theorem [Singer, 1970].

Define ||| $\cdot\left|\left|\mid\right.\right.$ (trace norm, nuclear norm, c_{1}-norm) and $\langle\cdot, \cdot\rangle$ by

$$
\|\|\mathbf{X}\|\|=\sigma_{1}+\cdots+\sigma_{n}, \quad\langle\mathbf{Z}, \mathbf{X}\rangle \equiv \operatorname{tr}\left(\mathbf{Z}^{*} \mathbf{X}\right)
$$

General characterization of spectral approximations

General characterization by [Lau and Riha, 1981] and [Ziętak, 1993, 1996] \rightarrow based on the Singer's theorem [Singer, 1970].

Define ||| $\cdot\left|\left|\mid\right.\right.$ (trace norm, nuclear norm, c_{1}-norm) and $\langle\cdot, \cdot\rangle$ by

$$
\|\mathbf{X}\| \|=\sigma_{1}+\cdots+\sigma_{n}, \quad\langle\mathbf{Z}, \mathbf{X}\rangle \equiv \operatorname{tr}\left(\mathbf{Z}^{*} \mathbf{X}\right)
$$

Characterization: [Ziẹtak, 1996] $\mathbf{A}_{*} \in \mathbb{A}$ is a spectral approximation of \mathbf{B} from the subspace \mathbb{A} iff there exists $\mathbf{Z} \in \mathbb{C}^{n \times n}$, s.t.

$$
\|\mathbf{Z}\| \|=1, \quad\langle\mathbf{Z}, \mathbf{X}\rangle=0, \quad \forall \mathbf{X} \in \mathbb{A}
$$

and

$$
\operatorname{Re}\left\langle\mathbf{Z}, \mathbf{B}-\mathbf{A}_{*}\right\rangle=\left\|\mathbf{B}-\mathbf{A}_{*}\right\| .
$$

Chebyshev polynomials of Jordan blocks

Theorem. Let \mathbf{J}_{λ} be the $n \times n$ Jordan block. Consider the ideal Arnoldi approximation problem

$$
\min _{p \in \mathcal{M}_{m}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\|=\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

where $\mathbf{B}=\mathbf{J}_{\lambda}^{m}, \mathbb{A}=\operatorname{span}\left\{\mathbf{I}, \mathbf{J}_{\lambda}, \ldots, \mathbf{J}_{\lambda}^{m-1}\right\}$. The minimum is attained by the polynomial $p_{*}=(z-\lambda)^{m}$ [Liesen and T., 2008].

Chebyshev polynomials of Jordan blocks

Theorem. Let \mathbf{J}_{λ} be the $n \times n$ Jordan block. Consider the ideal Arnoldi approximation problem

$$
\min _{p \in \mathcal{M}_{m}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\|=\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

where $\mathbf{B}=\mathbf{J}_{\lambda}^{m}, \mathbb{A}=\operatorname{span}\left\{\mathbf{I}, \mathbf{J}_{\lambda}, \ldots, \mathbf{J}_{\lambda}^{m-1}\right\}$. The minimum is attained by the polynomial $p_{*}=(z-\lambda)^{m}$ [Liesen and T., 2008].

Proof. For $p=(z-\lambda)^{m}$, the residual matrix $\mathbf{B}-\mathbf{M}$ is given by

$$
\mathbf{B}-\mathbf{M}=p\left(\mathbf{J}_{\lambda}\right)=\left(\mathbf{J}_{\lambda}-\lambda \mathbf{I}\right)^{m}=\mathbf{J}_{0}^{m} .
$$

Chebyshev polynomials of Jordan blocks

Theorem. Let \mathbf{J}_{λ} be the $n \times n$ Jordan block. Consider the ideal Arnoldi approximation problem

$$
\min _{p \in \mathcal{M}_{m}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\|=\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

where $\mathbf{B}=\mathbf{J}_{\lambda}^{m}, \mathbb{A}=\operatorname{span}\left\{\mathbf{I}, \mathbf{J}_{\lambda}, \ldots, \mathbf{J}_{\lambda}^{m-1}\right\}$. The minimum is attained by the polynomial $p_{*}=(z-\lambda)^{m}$ [Liesen and T., 2008].

Proof. For $p=(z-\lambda)^{m}$, the residual matrix $\mathbf{B}-\mathbf{M}$ is given by

$$
\mathbf{B}-\mathbf{M}=p\left(\mathbf{J}_{\lambda}\right)=\left(\mathbf{J}_{\lambda}-\lambda \mathbf{I}\right)^{m}=\mathbf{J}_{0}^{m} .
$$

Define $\mathbf{Z} \equiv e_{1} e_{m+1}^{T}$. It holds that

$$
\||\mathbf{Z}|\|=1, \quad\left\langle\mathbf{Z}, \mathbf{J}_{\lambda}^{k}\right\rangle=0, \quad k=0, \ldots, m-1
$$

and

$$
\langle\mathbf{Z}, \mathbf{B}-\mathbf{M}\rangle=\left\langle\mathbf{Z}, \mathbf{J}_{0}^{m}\right\rangle=1=\|\mathbf{B}-\mathbf{M}\|
$$

Chebyshev polynomials of Jordan blocks

Theorem. Let \mathbf{J}_{λ} be the $n \times n$ Jordan block. Consider the ideal Arnoldi approximation problem

$$
\min _{p \in \mathcal{M}_{m}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\|=\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

where $\mathbf{B}=\mathbf{J}_{\lambda}^{m}, \mathbb{A}=\operatorname{span}\left\{\mathbf{I}, \mathbf{J}_{\lambda}, \ldots, \mathbf{J}_{\lambda}^{m-1}\right\}$. The minimum is attained by the polynomial $p_{*}=(z-\lambda)^{m}$ [Liesen and T., 2008].

Proof. For $p=(z-\lambda)^{m}$, the residual matrix $\mathbf{B}-\mathbf{M}$ is given by

$$
\mathbf{B}-\mathbf{M}=p\left(\mathbf{J}_{\lambda}\right)=\left(\mathbf{J}_{\lambda}-\lambda \mathbf{I}\right)^{m}=\mathbf{J}_{0}^{m} .
$$

Define $\mathbf{Z} \equiv e_{1} e_{m+1}^{T}$. It holds that

$$
\||\mathbf{Z}|\|=1, \quad\left\langle\mathbf{Z}, \mathbf{J}_{\lambda}^{k}\right\rangle=0, \quad k=0, \ldots, m-1
$$

and

$$
\langle\mathbf{Z}, \mathbf{B}-\mathbf{M}\rangle=\left\langle\mathbf{Z}, \mathbf{J}_{0}^{m}\right\rangle=1=\|\mathbf{B}-\mathbf{M}\| \quad \Rightarrow \quad \mathbf{M}=\mathbf{A}_{*} .
$$

Ziettak's sufficient condition

Theorem [Ziętak, 1993]. If the residual matrix $\mathbf{B}-\mathbf{A}_{*}$ has an n-fold maximal singular value, then the spectral approximation \mathbf{A}_{*} of \mathbf{B} from the subspace \mathbb{A} is unique.

For the ideal Arnoldi approximation problem and the Jordan block \mathbf{J}_{λ}, we have shown that

$$
\mathbf{B}-\mathbf{A}_{*}=\mathbf{J}_{0}^{m} .
$$

One is $(n-m)$-fold maximal singular value of $\mathbf{B}-\mathbf{A}_{*}$, zero is m-fold singular value of $\mathbf{B}-\mathbf{A}_{*}$.

Ziettak's sufficient condition

Theorem [Ziętak, 1993]. If the residual matrix $\mathbf{B}-\mathbf{A}_{*}$ has an n-fold maximal singular value, then the spectral approximation \mathbf{A}_{*} of \mathbf{B} from the subspace \mathbb{A} is unique.

For the ideal Arnoldi approximation problem and the Jordan block \mathbf{J}_{λ}, we have shown that

$$
\mathbf{B}-\mathbf{A}_{*}=\mathbf{J}_{0}^{m} .
$$

One is $(n-m)$-fold maximal singular value of $\mathbf{B}-\mathbf{A}_{*}$, zero is m-fold singular value of $\mathbf{B}-\mathbf{A}_{*}$.

The spectral approximation is unique [Greenbaum and Trefethen. 1994], but, apparently, Ziętak's sufficient condition is not satisfied!

Outline

(1) General matrix approximation problems

(2) Formulation of matrix polynomial approximation problems
(3) Uniqueness results

The problem and known results

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\| .
$$

where $\|\cdot\|$ is the spectral norm and f is a given polynomial.

The problem and known results

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\| .
$$

where $\|\cdot\|$ is the spectral norm and f is a given polynomial.

Known results

- If \mathbf{A} is normal, the problem reduces to the well studied scalar approximation problem on the spectrum of \mathbf{A},

$$
\min _{p \in \mathcal{P}_{m}} \max _{\lambda \in \Lambda}|f(\lambda)-p(\lambda)|
$$

The problem and known results

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\| .
$$

where $\|\cdot\|$ is the spectral norm and f is a given polynomial.

Known results

- If \mathbf{A} is normal, the problem reduces to the well studied scalar approximation problem on the spectrum of \mathbf{A},

$$
\min _{p \in \mathcal{P}_{m}} \max _{\lambda \in \Lambda}|f(\lambda)-p(\lambda)| .
$$

- For general \mathbf{A} - only a special case of $f(\mathbf{A})=\mathbf{A}^{m+1}$ is known to have a unique solution [Greenbaum and Trefethen, 1994].

Reformulation of the problem

Let f be a polynomial of degree $m+\ell+1(m \geq 0, \ell \geq 0)$. Then

$$
f(z)=z^{m+1} g(z)+f_{m} z^{m}+\cdots+f_{1} z+f_{0}
$$

where g is a polynomial of degree at most ℓ. Approximate f by p

$$
p(z)=p_{m} z^{m}+\cdots+p_{1} z+p_{0} .
$$

Reformulation of the problem

Let f be a polynomial of degree $m+\ell+1(m \geq 0, \ell \geq 0)$. Then

$$
f(z)=z^{m+1} g(z)+f_{m} z^{m}+\cdots+f_{1} z+f_{0}
$$

where g is a polynomial of degree at most ℓ. Approximate f by p

$$
p(z)=p_{m} z^{m}+\cdots+p_{1} z+p_{0} .
$$

It is easy to show that

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|=\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\| .
$$

Reformulation of the problem

Let f be a polynomial of degree $m+\ell+1(m \geq 0, \ell \geq 0)$. Then

$$
f(z)=z^{m+1} g(z)+f_{m} z^{m}+\cdots+f_{1} z+f_{0}
$$

where g is a polynomial of degree at most ℓ. Approximate f by p

$$
p(z)=p_{m} z^{m}+\cdots+p_{1} z+p_{0} .
$$

It is easy to show that

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|=\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|
$$

Without loss of generality we can consider the problem

$$
\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|
$$

where g is a given polynomial of degree at most ℓ.

Matrix polynomial approximation problems

We consider the problem

$$
\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|
$$

where g is a given polynomial of degree at most ℓ.
For $g \equiv 1$ we obtain the ideal Arnoldi approximation problem.

Matrix polynomial approximation problems

We consider the problem

$$
\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|
$$

where g is a given polynomial of degree at most ℓ.
For $g \equiv 1$ we obtain the ideal Arnoldi approximation problem.
Related problem:

$$
\min _{g \in \mathcal{P}_{\ell}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|
$$

where h is a given polynomial of degree at most m.
For $h \equiv 1$ we obtain the ideal GMRES approximation problem.

Matrix polynomial approx. problems - general notation

We consider matrix approximation problems of the form

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

(1)

$$
\begin{aligned}
\mathbf{B} & \equiv \mathbf{A}^{m+1} g(\mathbf{A}), \quad g \in \mathcal{P}_{\ell} \text { given } \\
\mathbb{A} & \equiv \operatorname{span}\left\{\mathbf{I}, \mathbf{A}, \ldots, \mathbf{A}^{m}\right\}
\end{aligned}
$$

(2)

$$
\begin{array}{rlr}
\mathbf{B} & \equiv h(\mathbf{A}), \quad h \in \mathcal{P}_{m} \text { given } \\
\mathbb{A} & \equiv \operatorname{span}\left\{\mathbf{A}^{m+1}, \mathbf{A}^{m+2}, \ldots, \mathbf{A}^{m+\ell+1}\right\}
\end{array}
$$

$\mathbf{B} \in \mathbb{C}^{n \times n} \backslash \mathbb{A}$ means that the minimum >0.

Outline

(1) General matrix approximation problems

2 Formulation of matrix polynomial approximation problems
(3) Uniqueness results

Uniqueness results

Theorem [Liesen and T., 2008].
(1) Given $g \in \mathcal{P}_{\ell}$, the problem

$$
\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|>0
$$

has the unique minimizer.

Uniqueness results

Theorem [Liesen and T., 2008].
(1) Given $g \in \mathcal{P}_{\ell}$, the problem

$$
\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|>0
$$

has the unique minimizer.
(2) Let \mathbf{A} be nonsingular and $h \in \mathcal{P}_{m}$ given. Then the problem

$$
\min _{g \in \mathcal{P}_{\ell}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|>0
$$

has the unique minimizer.

Uniqueness results

Theorem [Liesen and T., 2008].
(1) Given $g \in \mathcal{P}_{\ell}$, the problem

$$
\min _{h \in \mathcal{P}_{m}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|>0
$$

has the unique minimizer.
(2) Let \mathbf{A} be nonsingular and $h \in \mathcal{P}_{m}$ given. Then the problem

$$
\min _{g \in \mathcal{P}_{\ell}}\left\|\mathbf{A}^{m+1} g(\mathbf{A})-h(\mathbf{A})\right\|>0
$$

has the unique minimizer.

The nonsingularity in (2) cannot be omitted in general.

Idea of the proof (by contradiction)

Based on the proof by [Greenbaum and Trefethen, 1994].
Consider the problem

$$
\min _{p \in \mathcal{G}_{\ell, m}^{(g)}}\|p(\mathbf{A})\|
$$

where

$$
\mathcal{G}_{\ell, m}^{(g)} \equiv\left\{z^{m+1} g+h: g \in \mathcal{P}_{\ell} \text { is given, } h \in \mathcal{P}_{m}\right\}
$$

Let q_{1} and q_{2} be two different solutions, $\left\|q_{1}(\mathbf{A})\right\|=\left\|q_{2}(\mathbf{A})\right\|=C$.

Idea of the proof (by contradiction)

Based on the proof by [Greenbaum and Trefethen, 1994].
Consider the problem

$$
\min _{p \in \mathcal{G}_{\ell, m}^{(g)}}\|p(\mathbf{A})\|
$$

where

$$
\mathcal{G}_{\ell, m}^{(g)} \equiv\left\{z^{m+1} g+h: g \in \mathcal{P}_{\ell} \text { is given, } h \in \mathcal{P}_{m}\right\}
$$

Let q_{1} and q_{2} be two different solutions, $\left\|q_{1}(\mathbf{A})\right\|=\left\|q_{2}(\mathbf{A})\right\|=C$.
Use q_{1} and q_{2} to construct the polynomial

$$
q_{\epsilon}=(1-\epsilon) q+\epsilon \widetilde{q} \in \mathcal{G}_{\ell, m}^{(g)}
$$

and show that, for sufficiently small ϵ,

$$
\left\|q_{\epsilon}(\mathbf{A})\right\|<C
$$

Summary

- We showed uniqueness of two matrix best approximation problems in spectral norm,

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

and

$$
\min _{p \in \mathcal{P}_{\ell}}\left\|h(\mathbf{A})-\mathbf{A}^{m+1} p(\mathbf{A})\right\| .
$$

Summary

- We showed uniqueness of two matrix best approximation problems in spectral norm,

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

and

$$
\min _{p \in \mathcal{P}_{\ell}}\left\|h(\mathbf{A})-\mathbf{A}^{m+1} p(\mathbf{A})\right\| .
$$

- Generalization of ideal Arnoldi and ideal GMRES problems.

Summary

- We showed uniqueness of two matrix best approximation problems in spectral norm,

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

and

$$
\min _{p \in \mathcal{P}_{\ell}}\left\|h(\mathbf{A})-\mathbf{A}^{m+1} p(\mathbf{A})\right\| .
$$

- Generalization of ideal Arnoldi and ideal GMRES problems.
- Nontrivial problem for nonnormal A.

Summary

- We showed uniqueness of two matrix best approximation problems in spectral norm,

$$
\min _{p \in \mathcal{P}_{m}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

and

$$
\min _{p \in \mathcal{P}_{\ell}}\left\|h(\mathbf{A})-\mathbf{A}^{m+1} p(\mathbf{A})\right\| .
$$

- Generalization of ideal Arnoldi and ideal GMRES problems.
- Nontrivial problem for nonnormal A.
- Open question: When does the general problem

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

have a unique solution?

Related papers

- J. Liesen and P. Tichý, [On best approximations of polynomials in matrices in the matrix 2-norm, submitted, June 2008.]
- A. Greenbaum and N. L. Trefethen, [GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992), SIAM J. Sci. Comput. 15 (1994), no. 2, 359-368]

More details can be found at

$$
\begin{gathered}
\text { http://www.cs.cas.cz/tichy } \\
\text { http://www.math.tu-berlin.de/~1iesen }
\end{gathered}
$$

Related papers

- J. Liesen and P. Tichý, [On best approximations of polynomials in matrices in the matrix 2-norm, submitted, June 2008.]
- A. Greenbaum and N. L. Trefethen, [GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992), SIAM J. Sci. Comput. 15 (1994), no. 2, 359-368]

More details can be found at

$$
\begin{gathered}
\text { http://www.cs.cas.cz/tichy } \\
\text { http://www.math.tu-berlin.de/~1iesen }
\end{gathered}
$$

Thank you for your attention!

