On a New Proof of the Faber-Manteuffel Theorem

Petr Tichý
joint work with
Jörg Liesen and Vance Faber
Institute of Computer Science,
Academy of Sciences of the Czech Republic

April 28, 2008, Novi Sad, Serbia

Outline

(1) Introduction
(2) Formulation of the problem
(3) The Faber-Manteuffel theorem
(4) The ideas of a new proof

Outline

(1) Introduction
(2) Formulation of the problem
(3) The Faber-Manteuffel theorem

4 The ideas of a new proof

Krylov subspace methods

Given $\mathbf{A} \in \mathbb{R}^{n \times n}, v \in \mathbb{R}^{n}$. Define the j th Krylov subspace

$$
\mathcal{K}_{j}(\mathbf{A}, v) \equiv \operatorname{span}\left(v, \mathbf{A} v, \ldots, \mathbf{A}^{j-1} v\right)
$$

Krylov subspace methods

Krylov subspace methods

Given $\mathbf{A} \in \mathbb{R}^{n \times n}, v \in \mathbb{R}^{n}$. Define the j th Krylov subspace

$$
\mathcal{K}_{j}(\mathbf{A}, v) \equiv \operatorname{span}\left(v, \mathbf{A} v, \ldots, \mathbf{A}^{j-1} v\right)
$$

Krylov subspace methods:

- Iterative methods for solving large and sparse linear systems or eigenvalue problems,
- they are based on projection onto the Krylov subspaces,
- examples: Lanczos, CG, Arnoldi, GMRES, BiCG.

Krylov subspace methods

Basis

Each method must generate a basis of $\mathcal{K}_{j}(\mathbf{A}, v), \quad j=1,2, \ldots$

- The trivial choice $v, \mathbf{A} v, \ldots, \mathbf{A}^{j-1} v$ is computationally infeasible (recall the Power Method).

Krylov subspace methods

Basis

Each method must generate a basis of $\mathcal{K}_{j}(\mathbf{A}, v), \quad j=1,2, \ldots$

- The trivial choice $v, \mathbf{A} v, \ldots, \mathbf{A}^{j-1} v$ is computationally infeasible (recall the Power Method).
- For numerical stability: Well conditioned basis.
- For computational efficiency: Short recurrence.

Krylov subspace methods

Basis

Each method must generate a basis of $\mathcal{K}_{j}(\mathbf{A}, v), \quad j=1,2, \ldots$

- The trivial choice $v, \mathbf{A} v, \ldots, \mathbf{A}^{j-1} v$ is computationally infeasible (recall the Power Method).
- For numerical stability: Well conditioned basis.
- For computational efficiency: Short recurrence.
- Best of both worlds:

Orthogonal basis computed by short recurrence.

Optimal Krylov subspace methods

with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

- based on three-term recurrences

$$
r_{j+1}=\gamma_{j} \mathbf{A} r_{j}-\alpha_{j} r_{j}-\beta_{j} r_{j-1}
$$

Optimal Krylov subspace methods

with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

- based on three-term recurrences

$$
r_{j+1}=\gamma_{j} \mathbf{A} r_{j}-\alpha_{j} r_{j}-\beta_{j} r_{j-1}
$$

- generate orthogonal (or A-orthogonal) Krylov subspace basis,

Optimal Krylov subspace methods

with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

- based on three-term recurrences

$$
r_{j+1}=\gamma_{j} \mathbf{A} r_{j}-\alpha_{j} r_{j}-\beta_{j} r_{j-1}
$$

- generate orthogonal (or A-orthogonal) Krylov subspace basis,
- optimal in the sense that they minimize some error norm:

$$
\begin{aligned}
& \left\|x-x_{j}\right\|_{\mathbf{A}} \text { in CG, } \\
& \left\|x-x_{j}\right\|_{\mathbf{A}^{T} \mathbf{A}}=\left\|r_{j}\right\| \text { in MINRES, } \\
& \left\|x-x_{j}\right\| \text { in SYMMLQ -here } x_{j} \in x_{0}+\mathbf{A} \mathcal{K}_{j}\left(\mathbf{A}, r_{0}\right) .
\end{aligned}
$$

Optimal Krylov subspace methods

CG (1952), MINRES, SYMMLQ (1975)

- based on three-term recurrences

$$
r_{j+1}=\gamma_{j} \mathbf{A} r_{j}-\alpha_{j} r_{j}-\beta_{j} r_{j-1}
$$

- generate orthogonal (or A-orthogonal) Krylov subspace basis,
- optimal in the sense that they minimize some error norm:

$$
\begin{aligned}
& \left\|x-x_{j}\right\|_{\mathbf{A}} \text { in CG, } \\
& \left\|x-x_{j}\right\|_{\mathbf{A}^{T} \mathbf{A}}=\left\|r_{j}\right\| \text { in MINRES } \\
& \left\|x-x_{j}\right\| \text { in SYMMLQ -here } x_{j} \in x_{0}+\mathbf{A} \mathcal{K}_{j}\left(\mathbf{A}, r_{0}\right)
\end{aligned}
$$

- An important assumption on \mathbf{A} :
\mathbf{A} is symmetric (MINRES, SYMMLQ) \& pos. definite (CG).

Gene Golub

G. H. Golub, 1932-2007

- By the end of the 1970 s it was unknown if such methods existed also for general unsymmetric \mathbf{A}.
- Gatlinburg VIII (now Householder VIII) held in Oxford from July 5 to 11, 1981.
- "A prize of $\$ 500$ has been offered by Gene Golub for the construction of a 3-term conjugate gradient like descent method for non-symmetric real matrices or a proof that there can be no such method".

What kind of method Golub had in mind

- We want to solve $\mathbf{A} x=b$ using CG-like descent method: error is minimized in some given inner product norm, $\|\cdot\|_{\mathbf{B}}=\langle\cdot, \cdot\rangle_{\mathbf{B}}^{1 / 2}$.

What kind of method Golub had in mind

- We want to solve $\mathbf{A} x=b$ using CG-like descent method: error is minimized in some given inner product norm,

$$
\|\cdot\|_{\mathbf{B}}=\langle\cdot, \cdot\rangle_{\mathbf{B}}^{1 / 2}
$$

- Starting from x_{0}, compute

$$
x_{j+1}=x_{j}+\alpha_{j} p_{j}, \quad j=0,1, \ldots,
$$

p_{j} is a direction vector, α_{j} is a scalar (to be determined),

$$
\operatorname{span}\left\{p_{0}, \ldots, p_{j}\right\}=\mathcal{K}_{j+1}\left(\mathbf{A}, r_{0}\right), \quad r_{0}=b-\mathbf{A} x_{0}
$$

What kind of method Golub had in mind

- We want to solve $\mathbf{A} x=b$ using CG-like descent method: error is minimized in some given inner product norm,

$$
\|\cdot\|_{\mathbf{B}}=\langle\cdot, \cdot\rangle_{\mathbf{B}}^{1 / 2}
$$

- Starting from x_{0}, compute

$$
x_{j+1}=x_{j}+\alpha_{j} p_{j}, \quad j=0,1, \ldots,
$$

p_{j} is a direction vector, α_{j} is a scalar (to be determined),

$$
\operatorname{span}\left\{p_{0}, \ldots, p_{j}\right\}=\mathcal{K}_{j+1}\left(\mathbf{A}, r_{0}\right), \quad r_{0}=b-\mathbf{A} x_{0}
$$

- $\left\|x-x_{j+1}\right\|_{\mathbf{B}}$ is minimal iff

$$
\alpha_{j}=\frac{\left\langle x-x_{j}, p_{j}\right\rangle_{\mathbf{B}}}{\left\langle p_{j}, p_{j}\right\rangle_{\mathbf{B}}} \quad \text { and } \quad\left\langle p_{j}, p_{i}\right\rangle_{\mathbf{B}}=0
$$

What kind of method Golub had in mind

- We want to solve $\mathbf{A} x=b$ using CG-like descent method: error is minimized in some given inner product norm,

$$
\|\cdot\|_{\mathbf{B}}=\langle\cdot, \cdot\rangle_{\mathbf{B}}^{1 / 2}
$$

- Starting from x_{0}, compute

$$
x_{j+1}=x_{j}+\alpha_{j} p_{j}, \quad j=0,1, \ldots,
$$

p_{j} is a direction vector, α_{j} is a scalar (to be determined),

$$
\operatorname{span}\left\{p_{0}, \ldots, p_{j}\right\}=\mathcal{K}_{j+1}\left(\mathbf{A}, r_{0}\right), \quad r_{0}=b-\mathbf{A} x_{0}
$$

- $\left\|x-x_{j+1}\right\|_{\mathbf{B}}$ is minimal iff

$$
\alpha_{j}=\frac{\left\langle x-x_{j}, p_{j}\right\rangle_{\mathbf{B}}}{\left\langle p_{j}, p_{j}\right\rangle_{\mathbf{B}}} \quad \text { and } \quad\left\langle p_{j}, p_{i}\right\rangle_{\mathbf{B}}=0
$$

- p_{0}, \ldots, p_{j} has to be a B-orthogonal basis of $\mathcal{K}_{j+1}\left(\mathbf{A}, r_{0}\right)$.

Faber and Manteuffel, 1984

NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE GRADIENT METHOD*

VANCE FABER \dagger AND THOMAS MANTEUFFEL \dagger

Abstract. We characterize the class $C G(s)$ of matrices A for which the linear system $A \mathbf{x}=\mathbf{b}$ can be solved by an s-term conjugate gradient method. We show that, except for a few anomalies, the class $C G(s)$ consists of matrices A for which conjugate gradient methods are already known. These matrices are the Hermitian matrices, $A^{*}=A$, and the matrices of the form $A=e^{i \theta}(d I+B)$, with $B^{*}=-B$.

- Faber and Manteuffel gave the answer in 1984: For a general matrix A there exists no short recurrence for generating orthogonal Krylov subspace bases.
- What are the details of this statement?

Outline

(1) Introduction

(2) Formulation of the problem
(3) The Faber-Manteuffel theorem

4 The ideas of a new proof

Formulation of the problem

B-inner product, Input and Notation

Without loss of generality, $\mathbf{B}=\mathbf{I}$. Otherwise change the basis:

$$
\langle x, y\rangle_{\mathbf{B}}=\left\langle\mathbf{B}^{1 / 2} x, \mathbf{B}^{1 / 2} y\right\rangle, \quad \hat{\mathbf{A}} \equiv \mathbf{B}^{1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}, \quad \hat{v} \equiv \mathbf{B}^{1 / 2} v
$$

Formulation of the problem

B-inner product, Input and Notation

Without loss of generality, $\mathbf{B}=\mathbf{I}$. Otherwise change the basis:

$$
\langle x, y\rangle_{\mathbf{B}}=\left\langle\mathbf{B}^{1 / 2} x, \mathbf{B}^{1 / 2} y\right\rangle, \quad \hat{\mathbf{A}} \equiv \mathbf{B}^{1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}, \quad \hat{v} \equiv \mathbf{B}^{1 / 2} v
$$

Input data:

- $\mathbf{A} \in \mathbb{C}^{n \times n}$, a nonsingular matrix.
- $v \in \mathbb{C}^{n}$, an initial vector.

Formulation of the problem

B-inner product, Input and Notation

Without loss of generality, $\mathbf{B}=\mathbf{I}$. Otherwise change the basis:

$$
\langle x, y\rangle_{\mathbf{B}}=\left\langle\mathbf{B}^{1 / 2} x, \mathbf{B}^{1 / 2} y\right\rangle, \quad \hat{\mathbf{A}} \equiv \mathbf{B}^{1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}, \quad \hat{v} \equiv \mathbf{B}^{1 / 2} v
$$

Input data:

- $\mathbf{A} \in \mathbb{C}^{n \times n}$, a nonsingular matrix.
- $v \in \mathbb{C}^{n}$, an initial vector.

Notation:

- $d_{\min }(\mathbf{A}) \ldots$ the degree of the minimal polynomial of \mathbf{A}.
- $d=d(\mathbf{A}, v) \ldots$ the grade of v with respect to \mathbf{A}, the smallest d s.t. $\mathcal{K}_{d}(\mathbf{A}, v)$ is invariant under mult. with \mathbf{A}.

Formulation of the problem

Our Goal

- Generate a basis v_{1}, \ldots, v_{d} of $\mathcal{K}_{d}(\mathbf{A}, v)$ s.t.

1. $\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}=\mathcal{K}_{j}(A, v)$, for $j=1, \ldots, d$,
2. $\left\langle v_{i}, v_{j}\right\rangle=0$, for $i \neq j, \quad i, j=1, \ldots, d$.

Formulation of the problem

Our Goal

- Generate a basis v_{1}, \ldots, v_{d} of $\mathcal{K}_{d}(\mathbf{A}, v)$ s.t.

$$
\begin{aligned}
& \text { 1. } \operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}=\mathcal{K}_{j}(A, v), \text { for } j=1, \ldots, d \text {, } \\
& \text { 2. }\left\langle v_{i}, v_{j}\right\rangle=0, \text { for } i \neq j, \quad i, j=1, \ldots, d .
\end{aligned}
$$

Arnoldi's method:

Standard way for generating the orthogonal basis (no normalization for convenience): $v_{1} \equiv v$,

$$
\begin{aligned}
& v_{j+1}=\mathbf{A} v_{j}-\sum_{i=1}^{j} h_{i, j} v_{i}, \quad h_{i, j}=\frac{\left\langle\mathbf{A} v_{j}, v_{i}\right\rangle}{\left\langle v_{i}, v_{i}\right\rangle}, \\
& j=0, \ldots, d-1 .
\end{aligned}
$$

Formulation of the problem

Arnoldi's method - matrix formulation

In matrix notation:

$$
\begin{aligned}
v_{1} & =v, \\
\mathbf{A} \underbrace{\left[v_{1}, \ldots, v_{d-1}\right]}_{\equiv \mathbf{V}_{d-1}} & =\underbrace{\left[v_{1}, \ldots, v_{d}\right]}_{\equiv \mathbf{V}_{d}} \underbrace{\left[\begin{array}{ccc}
h_{1,1} & \cdots & h_{1, d-1} \\
1 & \ddots & \vdots \\
& \ddots & h_{d-1, d-1} \\
& & 1
\end{array}\right]}
\end{aligned}
$$

$\mathbf{V}_{d}^{*} \mathbf{V}_{d}$ is diagonal, $\quad d=\operatorname{dim} \mathcal{K}_{n}(\mathbf{A}, v)$.

Formulation of the problem

Optimal short recurrences (Definition - Liesen and Strakoš, 2008)

A admits an optimal $(s+2)$-term recurrence, if

- for any $v, \mathbf{H}_{d, d-1}$ is at most $(s+2)$-band Hessenberg, and
- for at least one $v, \mathbf{H}_{d, d-1}$ is $(s+2)$-band Hessenberg.

Formulation of the problem

Basic question

What are sufficient and necessary conditions for \mathbf{A} to admit an optimal ($s+2$)-term recurrence?

Formulation of the problem

Basic question

What are sufficient and necessary conditions for \mathbf{A} to admit an optimal $(s+2)$-term recurrence?

In other words, how can we characterize matrices A such that for any v, Arnoldi's method applied to \mathbf{A} and v generates an orthogonal basis via a short recurrence of length $s+2$.

Formulation of the problem

Basic question

What are sufficient and necessary conditions for \mathbf{A} to admit an optimal $(s+2)$-term recurrence?

In other words, how can we characterize matrices A such that for any v, Arnoldi's method applied to \mathbf{A} and v generates an orthogonal basis via a short recurrence of length $s+2$.

Example of sufficiency: If $\mathbf{A}^{*}=\mathbf{A}$, then $s=1$ and \mathbf{A} admits an optimal 3-term recurrence.

Formulation of the problem

Basic question

What are sufficient and necessary conditions for \mathbf{A} to admit an optimal $(s+2)$-term recurrence?

In other words, how can we characterize matrices A such that for any v, Arnoldi's method applied to \mathbf{A} and v generates an orthogonal basis via a short recurrence of length $s+2$.

Example of sufficiency: If $\mathbf{A}^{*}=\mathbf{A}$, then $s=1$ and \mathbf{A} admits an optimal 3 -term recurrence.

Definition. If

$$
\mathbf{A}^{*}=p_{s}(\mathbf{A})
$$

where p_{s} is a polynomial of the smallest possible degree s, \mathbf{A} is called normal (s).

Outline

(1) Introduction
 (2) Formulation of the problem

(3) The Faber-Manteuffel theorem

4 The ideas of a new proof

The Faber-Manteuffel theorem

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]
Let \mathbf{A} be a nonsingular matrix with minimal polynomial degree $d_{\text {min }}(\mathbf{A})$. Let s be a nonnegative integer, $s+2<d_{\text {min }}(\mathbf{A})$:

A admits an optimal $(s+2)$-term recurrence
if and only if
A is normal (s).

The Faber-Manteuffel theorem

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]

Let \mathbf{A} be a nonsingular matrix with minimal polynomial degree $d_{\text {min }}(\mathbf{A})$. Let s be a nonnegative integer, $s+2<d_{\text {min }}(\mathbf{A})$:

A admits an optimal ($s+2$)-term recurrence
if and only if
A is normal (s).

- Sufficiency is rather straightforward, necessity is not. Key words from the proof of necessity in (Faber and Manteuffel, 1984) include: "continuous function" (analysis), "closed set of smaller dimension" (topology), "wedge product" (multilinear algebra).

The Faber-Manteuffel theorem

Why is necessity so hard?

Optimal $(s+2)$-term recurrence:

Prove something about the linear operator \mathbf{A}, without complete knowledge of the structure of its matrix representation.

The Faber-Manteuffel theorem

Why is necessity so hard?
Since $\mathcal{K}_{d}(\mathbf{A}, v)$ is invariant, $\mathbf{A} v_{d} \in \mathcal{K}_{d}(\mathbf{A}, v)$ and

Outline

(1) Introduction

(2) Formulation of the problem
(3) The Faber-Manteuffel theorem
(4) The ideas of a new proof

V. Faber, J. Liesen and P. Tichý, 2008

The Faber-Manteuffel Theorem for Linear Operators

- Motivated by the paper [J. Liesen and Z. Strakoš, 2008] which contains a completely reworked theory of short recurrences for generating orthogonal Krylov subspace bases.
"It is unknown if a simpler proof of the necessity part can be found. In view of the fundamental nature of the Faber-Manteuffel Theorem, such proof would be a welcome addition to the existing literature. It would lead to a better understanding of the theorem by enlightening some (possibly unexpected) relationships, and it would also be more suitable for classroom teaching."

V. Faber, J. Liesen and P. Tichý, 2008

The Faber-Manteuffel Theorem for Linear Operators

- Motivated by the paper [J. Liesen and Z. Strakoš, 2008] which contains a completely reworked theory of short recurrences for generating orthogonal Krylov subspace bases.
"It is unknown if a simpler proof of the necessity part can be found. In view of the fundamental nature of the Faber-Manteuffel Theorem, such proof would be a welcome addition to the existing literature. It would lead to a better understanding of the theorem by enlightening some (possibly unexpected) relationships, and it would also be more suitable for classroom teaching."
- We give two new proofs of the Faber-Manteuffel theorem that use more elementary tools,
- first proof - improved version of the Faber-Manteuffel proof,
- second proof - completely new proof based on orthogonal transformations of upper Hessenberg matrices.

Idea of the second proof (1)

V. Faber, J. Liesen and P. Tichý, 2008

(for simplicity, we omit indices by \mathbf{V}_{d} and $\mathbf{H}_{d, d}$)
Let \mathbf{A} admit an optimal $(s+2)$-term recurrence

$$
\mathbf{A} \mathbf{V}=\mathbf{V} \mathbf{H}, \quad \mathbf{V}^{*} \mathbf{V}=\mathbf{I}
$$

Up to the last column, \mathbf{H} is $(s+2)$-band Hessenberg.

Idea of the second proof (1)

V. Faber, J. Liesen and P. Tichý, 2008

(for simplicity, we omit indices by \mathbf{V}_{d} and $\mathbf{H}_{d, d}$)
Let \mathbf{A} admit an optimal $(s+2)$-term recurrence

$$
\mathbf{A} \mathbf{V}=\mathbf{V} \mathbf{H}, \quad \mathbf{V}^{*} \mathbf{V}=\mathbf{I}
$$

Up to the last column, \mathbf{H} is $(s+2)$-band Hessenberg.
Let \mathbf{G} be a $d \times d$ unitary matrix, $\mathbf{G}^{*} \mathbf{G}=\mathbf{I}$. Then

$$
\mathbf{A} \underbrace{(\mathbf{V G})}_{\mathbf{W}}=\underbrace{(\mathbf{V G})}_{\mathbf{W}} \underbrace{\left(\mathbf{G}^{*} \mathbf{H G}\right)}_{\widetilde{\mathbf{H}}} .
$$

W is unitary.

Idea of the second proof (1)

V. Faber, J. Liesen and P. Tichý, 2008
(for simplicity, we omit indices by \mathbf{V}_{d} and $\mathbf{H}_{d, d}$)
Let \mathbf{A} admit an optimal $(s+2)$-term recurrence

$$
\mathbf{A} \mathbf{V}=\mathbf{V} \mathbf{H}, \quad \mathbf{V}^{*} \mathbf{V}=\mathbf{I}
$$

Up to the last column, \mathbf{H} is $(s+2)$-band Hessenberg.
Let \mathbf{G} be a $d \times d$ unitary matrix, $\mathbf{G}^{*} \mathbf{G}=\mathbf{I}$. Then

$$
\mathbf{A} \underbrace{(\mathbf{V G})}_{\mathbf{W}}=\underbrace{(\mathbf{V G})}_{\mathbf{W}} \underbrace{\left(\mathbf{G}^{*} \mathbf{H G}\right)}_{\widetilde{\mathbf{H}}}
$$

\mathbf{W} is unitary. If \mathbf{G} is chosen such that $\widetilde{\mathbf{H}}$ is again unreduced upper Hessenberg matrix, then

$$
\mathbf{A} \mathbf{W}=\mathbf{W} \tilde{\mathbf{H}}
$$

represents the result of Arnoldi's method applied to \mathbf{A} and w_{1}. Up to the last column, $\widetilde{\mathbf{H}}$ has to be $(s+2)$-band Hessenberg.

Idea of the second proof (2)

V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let \mathbf{A} admit an optimal $(s+2)$-term recurrence and \mathbf{A} not be normal(s).
Then there exists a starting vector v such that $h_{1, d} \neq 0$.

Idea of the second proof (2)

V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let \mathbf{A} admit an optimal $(s+2)$-term recurrence and A not be normal(s).
Then there exists a starting vector v such that $h_{1, d} \neq 0$.

Idea of the second proof (2)

V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let \mathbf{A} admit an optimal $(s+2)$-term recurrence and A not be normal(s).
Then there exists a starting vector v such that $h_{1, d} \neq 0$.

Find unitary \mathbf{G} (a product of Givens rotations) such that $\widetilde{\mathbf{H}}$ is unreduced upper Hessenberg, but $\widetilde{\mathbf{H}}$ is not $(s+2$)-band (up to the last column) - contradiction.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

$$
\left[\begin{array}{llllllll}
\bullet & \bullet & \bullet & 0 & 0 & 0 & 0 & \bullet \\
\bullet & \bullet & \bullet & \bullet & 0 & 0 & 0 & \bullet \\
& \bullet & \bullet & \bullet & \bullet & 0 & 0 & \bullet \\
& & \bullet & \bullet & \bullet & \bullet & 0 & \bullet \\
& & & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & & \bullet & \bullet & \bullet & \bullet \\
& & & & & \bullet & \bullet & \bullet \\
& & & & & & \bullet & \bullet
\end{array}\right] G_{7,8}
$$

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

$$
\left[\begin{array}{llllllll}
\bullet & \bullet & \bullet & 0 & 0 & 0 & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & 0 & 0 & \bullet & \bullet \\
& \bullet & \bullet & \bullet & \bullet & 0 & \bullet & \bullet \\
& & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & & \bullet & \bullet & \bullet & \bullet \\
& & & & & \bullet & \bullet & \bullet \\
& & & & & \bullet & \bullet & \bullet
\end{array}\right] G_{6,7}
$$

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

$$
\left[\begin{array}{llllllll}
\bullet & \bullet & \bullet & 0 & 0 & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & 0 & \bullet & \bullet & \bullet \\
& \bullet \\
& \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & & \bullet & \bullet & \bullet & \bullet \\
& & & \bullet & \bullet & \bullet & \bullet \\
& & & & & & \bullet & \bullet
\end{array} \mathbf{G}_{5,6}\right.
$$

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

$$
\left[\begin{array}{llllllll}
\bullet & \bullet & \bullet & 0 & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet \\
& \bullet \\
& & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & & & \bullet & \bullet & \bullet \\
& & & & & & \bullet & \bullet
\end{array} \mathbf{G}_{4,5}\right.
$$

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

$$
\left[\begin{array}{llllllll}
\bullet & \bullet \\
\bullet & \bullet \\
& \bullet \\
& & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & & \bullet & \bullet & \bullet & \bullet \\
& & & & & \bullet & \bullet & \bullet \\
& & & & & & \bullet & \bullet
\end{array} G_{3,4}\right.
$$

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

$$
\left[\begin{array}{llllllll}
\bullet & \bullet \\
\bullet & \bullet \\
& \bullet \\
& \bullet \\
& & & \bullet & \bullet & \bullet & \bullet & \bullet \\
& & & \bullet & \bullet & \bullet & \bullet \\
& & & & \bullet & \bullet & \bullet \\
& & & & & \bullet & \bullet
\end{array} \mathbf{G}_{2,3}\right.
$$

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

Idea of the second proof (3)

V. Faber, J. Liesen and P. Tichý, 2008

Let v be a starting vector such that $h_{1,8} \neq 0$.
Choose Givens rotation $\mathbf{G}_{7,8}$.

We proved: It is possible to choose $\mathbf{G}_{7,8}$ such that

$$
h_{1,8} \neq 0 \quad \Longrightarrow \quad \tilde{h}_{1,7} \neq 0 \text { or } \tilde{h}_{2,7} \neq 0 .
$$

Summary

Generating of orthogonal basis of $\mathcal{K}_{d}(\mathbf{A}, v)$ via short recurrences

Arnoldi-type recurrence

- When is A normal (s) ?
\Uparrow
A is normal(s)
$\mathbf{A}^{*}=p(\mathbf{A})$

Summary

Generating of orthogonal basis of $\mathcal{K}_{d}(\mathbf{A}, v)$ via short recurrences

Arnoldi-type recurrence $(s+2)$-term

I

\mathbf{A} is normal(s) $\mathbf{A}^{*}=p(\mathbf{A})$

- When is A normal (s) ?
- A is normal and
[Faber and Manteuffel, 1984], [Khavinson and Świạtek, 2003] [Liesen and Strakoš, 2008]

1. $s=1$ if and only if the eigenvalues of \mathbf{A} lie on a line in \mathbb{C}.
2. If the eigenvalues of \mathbf{A} are not on a line, then $d_{\min }(\mathbf{A}) \leq 3 s-2$.

Summary

Generating of orthogonal basis of $\mathcal{K}_{d}(\mathbf{A}, v)$ via short recurrences

Arnoldi-type recurrence $(s+2)$-term

I

A is normal(s)
$\mathbf{A}^{*}=p(\mathbf{A})$
\uparrow
the only interesting case is $s=1$, collinear eigenvalues

- When is A normal (s) ?
- A is normal and [Faber and Manteuffel, 1984], [Khavinson and Świạtek, 2003] [Liesen and Strakoš, 2008]

1. $s=1$ if and only if the eigenvalues of \mathbf{A} lie on a line in \mathbb{C}.
2. If the eigenvalues of \mathbf{A} are not on a line, then $d_{\min }(\mathbf{A}) \leq 3 s-2$.

Summary

Generating of orthogonal basis of $\mathcal{K}_{d}(\mathbf{A}, v)$ via short recurrences

> Arnoldi-type recurrence $(s+2)$-term

§

\mathbf{A} is normal(s) $\mathbf{A}^{*}=p(\mathbf{A})$
the only interesting case is $s=1$, collinear eigenvalues

- When is A normal (s) ?
- A is normal and [Faber and Manteuffel, 1984], [Khavinson and Świạtek, 2003] [Liesen and Strakoš, 2008]

1. $s=1$ if and only if the eigenvalues of \mathbf{A} lie on a line in \mathbb{C}.
2. If the eigenvalues of \mathbf{A} are not on a line, then $d_{\min }(\mathbf{A}) \leq 3 s-2$.

- All classes of "interesting" matrices are known.

Related papers

- J. Liesen and Z. Strakoš, [On optimal short recurrences for generating orthogonal Krylov subspace bases, to appear in SIAM Review, 2008]. Completely reworked theory of short recurrences for generating orthogonal Krylov subspace bases
- V. Faber, J. Liesen and P. Tichý, [The Faber-Manteuffel Theorem for Linear Operators, SIAM J. Numer. Anal., 2008, 46, 1323-1337].
New proofs of the fundamental theorem of Faber and Manteuffel

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/~1iesen
http://www.cs.cas.cz/strakos

Related papers

- J. Liesen and Z. Strakoš, [On optimal short recurrences for generating orthogonal Krylov subspace bases, to appear in SIAM Review, 2008]. Completely reworked theory of short recurrences for generating orthogonal Krylov subspace bases
- V. Faber, J. Liesen and P. Tichý, [The Faber-Manteuffel Theorem for Linear Operators, SIAM J. Numer. Anal., 2008, 46, 1323-1337].
New proofs of the fundamental theorem of Faber and Manteuffel

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/~liesen
http://www.cs.cas.cz/strakos

Thank you for your attention!

