Ideal GMRES and polynomial numerical hull for a Jordan block

Petr Tichý
joint work with
Jörg Liesen

Technische Universität Berlin
July 25, ALA 2006, Düsseldorf

GMRES and Ideal GMRES

Consider a system $\mathbf{A} x=b, \mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular, $b \in \mathbb{R}^{n}$. GMRES computes iterates $x_{k} \in x_{0}+\mathcal{K}_{k}\left(\mathbf{A}, r_{0}\right)$ such that

$$
\left\|r_{k}\right\|=\left\|b-\mathbf{A} x_{k}\right\|=\min _{p \in \pi_{k}}\left\|p(\mathbf{A}) r_{0}\right\|
$$

For simplicity assume $x_{0}=0$ and $\|b\|=1$. Then

$$
\left\|r_{k}\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| \quad \text { (ideal GMRES) }
$$

It can happen that for all b

$$
\left\|r_{k}\right\|<\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

[Faber et al. '96, Toh '97]

Toh's example

Ideal GMRES can be very different from worst-case GMRES!

Consider the 4 by 4 matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & \epsilon & & \\
& -1 & \epsilon^{-1} & \\
& & 1 & \epsilon \\
& & & -1
\end{array}\right], \quad \epsilon>0
$$

Then, for $k=3$, and for all $b,\|b\|=1$,

$$
0 \stackrel{\epsilon \rightarrow 0}{\longleftarrow}\left\|r_{k}\right\|<\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\frac{4}{5} .
$$

[Toh '97]

Outline

(1) Known results about ideal GMRES
(2) Ideal GMRES for a Jordan block
(3) Polynomial numerical hull
(9) Quality of the bound based on polynomial numerical hull

Ideal GMRES polynomial and ideal GMRES matrix

Definition

The polynomial $\varphi_{k} \in \pi_{k}$ is called the k th ideal GMRES polynomial of $\mathbf{A} \in \mathbb{R}^{n \times n}$, if it satisfies

$$
\left\|\varphi_{k}(\mathbf{A})\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

We call the matrix $\varphi_{k}(\mathbf{A})$ the k th ideal GMRES matrix of \mathbf{A}.

Existence and uniqueness of φ_{k} proved by

Known results about ideal GMRES

When does it hold that

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\| ?
$$

[Greenbaum \& Gurvits '94, Joubert '94]:

- if \mathbf{A} is normal,
- for $k=1$,
- if $\varphi_{k}(\mathbf{A})$ has a simple maximal singular value.
[Faber et al. '96]:
Let \mathbf{A} be n by n triangular Toeplitz matrix. Then

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=1 \Longleftrightarrow \min _{p \in \pi_{k}}\|p(\mathbf{A})\|=1
$$

A model problem - Jordan block

Let $\lambda>0$. Consider an n by n Jordan block

$$
\mathbf{J}_{\lambda}=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Open question

- Does ideal GMRES coincide with worst-case GMRES?

Multiplicity of the maximal singular value of $\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$ computed using the software SDPT3 by Toh

$$
\lambda=1, n=20 .
$$

Multiplicity of the maximal singular value of the kth ideal GMRES matrix

Observation

- If k and n are relatively prime, $\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$ has a simple maximal singular value (i.e. ideal GMRES $=$ worst-case GMRES).
- Let d be the greatest common divisor of k and n. Then the maximal singular value of $\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$ has multiplicity d.

Let d be the greatest common divisor of n and k. Let $\lambda>0$ be given and define

$$
\ell=\frac{k}{d}, \quad m=\frac{n}{d}, \quad \mu=\lambda^{d} .
$$

If

$$
\max _{\|b\|=1} \min _{p \in \pi_{\ell}}\left\|p\left(\mathbf{J}_{\mu}\right) b\right\|=\min _{p \in \pi_{\ell}}\left\|p\left(\mathbf{J}_{\mu}\right)\right\|
$$

where $\mathbf{J}_{\mu} \in \mathbb{R}^{m \times m}$, then

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\left\|p\left(\mathbf{J}_{\lambda}\right) b\right\|=\min _{p \in \pi_{k}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\|
$$

where $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$.

Two special cases

(1) Consider the step k such that k divides n, i.e. $d=k$,

$$
\ell=1, \quad m=\frac{n}{k}, \quad \mu=\lambda^{k}
$$

(2) Consider the step $n-k$ such that k divides n, i.e. $d=k$,

$$
\ell=m-1, \quad m=\frac{n}{k}, \quad \mu=\lambda^{k} .
$$

In both cases, the assumption of the previous Theorem

$$
\max _{\|b\|=1} \min _{p \in \pi_{\ell}}\left\|p\left(\mathbf{J}_{\mu}\right) b\right\|=\min _{p \in \pi_{\ell}}\left\|p\left(\mathbf{J}_{\mu}\right)\right\|
$$

is satisfied $(\lambda \geq 1)$.
[Tichý \& Liesen '06]

Some results for the Jordan block \mathbf{J}_{λ}

Let k divide n.

- At steps k and $n-k(\lambda \geq 1)$ worst-case GMRES $=$ ideal GMRES.
- Ideal GMRES polynomial φ_{k} :

$$
\varphi_{k}(z)=\bullet+\bullet(\lambda-z)^{k}
$$

- Let $\lambda \geq 1$. Then

$$
\min _{p \in \pi_{n-k}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\|=\frac{1}{\lambda^{n-k}}\left[\sum_{i=0}^{n / k-1} \lambda^{-2 k i} 4^{-2 i}\binom{2 i}{i}^{2}\right]^{-1}
$$

[T. \& Liesen '06]

Polynomial numerical hulls for a Jordan block

Polynomial numerical hull

Definition

Let A be n by n matrix. Polynomial numerical hull of degree k is a set in the complex plane defined by

$$
\mathcal{H}_{k} \equiv\left\{z \in \mathbb{C}:|p(z)| \leq\|p(\mathbf{A})\| \forall p \in \mathcal{P}_{k}\right\}
$$

where \mathcal{P}_{k} denotes the set of polynomials of degree k or less.

The set \mathcal{H}_{k} provides a lower bound

$$
\min _{p \in \pi_{k}} \max _{z \in \mathcal{H}_{k}}|p(z)| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

\mathcal{H}_{k} for a Jordan block \mathbf{J}_{λ}

\mathcal{H}_{k} is a circle around λ with a radius $\varrho_{k, n}$,
$1>\varrho_{1, n}>\cdots>\varrho_{n-1, n}>0$,
$\varrho_{1, n}$ and $\varrho_{n-1, n}$ are known,
[Faber \& Greenbaum \& Marshall '03]

$$
\varrho_{1, n}=\cos \left(\frac{\pi}{n+1}\right) .
$$

if n is even, $\varrho_{n-1, n}$ is the positive root of

$$
2 \varrho^{n}+\varrho-1=0 .
$$

$$
\varrho_{n-1, n} \geq 1-\frac{\log (2 n)}{n}
$$

Radius of polynomial numerical hull for \mathbf{J}_{λ}

Theorem

Let d be the greatest common divisor of n and k and define

$$
\ell=\frac{k}{d}, \quad m=\frac{n}{d} .
$$

Then

$$
\varrho_{k, n}=\varrho_{\ell, m}^{1 / d}
$$

Consider k such that k divides n. Then

$$
\varrho_{k, n}=\left[\cos \left(\frac{\pi}{m+1}\right)\right]^{\frac{1}{k}}, \quad \varrho_{n-k, n}=\varrho_{m-1, m}^{\frac{1}{k}}
$$

[T. \& Liesen '06]

Bound based on polynomial numerical hull

$$
\min _{p \in \pi_{k}} \max _{z \in \mathcal{H} \mathcal{H}_{k}}|p(z)| \leq \min _{p \in \pi_{k}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\| .
$$

For a Jordan block \mathbf{J}_{λ}

$$
\lambda^{-k} \varrho_{k, n}^{k} \leq \min _{p \in \pi_{k}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\| \leq \lambda^{-k}
$$

[Greenbaum '04]
If k divides n, then

$$
\lambda^{-k} \cos \left(\frac{\pi}{\frac{\pi}{k}+1}\right) \leq \min _{p \in \pi_{k}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\| \leq \lambda^{-k}
$$

In particular, if n is even, then it holds that for all $k \leq n / 2$

$$
\lambda^{-k} \frac{1}{2} \leq \min _{p \in \pi_{k}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\| \leq \lambda^{-k}
$$

[T. \& Liesen '06]

Quality of the bound in later iterations

$$
\lambda^{-k} \varrho_{k, n}^{k} \leq \min _{p \in \pi_{k}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\| .
$$

For simplicity, we concentrate on step $n-1$ and $\lambda=1$.
From our results it follows that

$$
\min _{p \in \pi_{n-1}}\left\|p\left(\mathbf{J}_{\lambda}\right)\right\| \sim \frac{1}{1+\log (n)}
$$

Using the bounds on $\varrho_{n-1, n}$ one can show that, for $n>2$

$$
\frac{1}{2 n} \leq \varrho_{n-1, n}^{n-1} \leq \frac{\log (n)}{2 n}
$$

Ideal GMRES converges slower that the lower bound predicts.

Conclusions for the Jordan block \mathbf{J}_{λ}

(1) Based on numerical observation for k and n being relatively prime, and based on our theorem we can conclude that ideal GMRES $=$ worst-case GMRES for a Jordan block.
(2) Theoretically, we were able to prove this only at steps k and $n-k$ such that k divides n.
(3) There is a relation among radii of polynomial numerical hulls.
(9) The bound based on polynomial numerical hull is tight up to the step $n / 2$. In later iterations, this bound underestimates the ideal GMRES convergence (for $\lambda \geq 1$).

Thank you for your attention!

More details can be found in

Tichý, P. and Liesen, J., GMRES convergence and the polynomial numerical hull for a Jordan block, submitted to Linear Algebra and its Applications.
http://www.math.tu-berlin.de/~tichy

