1. Prove the following lemma. Let $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with a smooth boundary, and \boldsymbol{v} is a smooth vector field that vanishes on the boundary $\left.\boldsymbol{v}\right|_{\partial \Omega}=0$. Then

$$
2 \int_{\Omega} \mathbb{D}: \mathbb{D} \mathrm{dv}=\int_{\Omega} \nabla \boldsymbol{v}: \nabla \boldsymbol{v} \mathrm{dv}+\int_{\Omega}(\operatorname{div} \boldsymbol{v})^{2} \mathrm{dv}
$$

where \mathbb{D} denotes the symmetric part of the gradient of \boldsymbol{v}, that is $\mathbb{D}={ }_{\text {def }} \frac{1}{2}\left(\nabla \boldsymbol{v}+(\nabla \boldsymbol{v})^{\top}\right)$, and $\mathbb{A}: \mathbb{B}={ }_{\text {def }} \operatorname{Tr}\left(\mathbb{A} \mathbb{B}^{\top}\right)$.

