1. Let \boldsymbol{v} denote the Eulerian velocity field. We already know that

$$
\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}=\frac{\partial \boldsymbol{v}}{\partial t}+(\operatorname{rot} \boldsymbol{v}) \times \boldsymbol{v}+\nabla\left(\frac{1}{2} \boldsymbol{v} \bullet \boldsymbol{v}\right)
$$

where $\frac{\mathrm{d}}{\mathrm{d} t}$ is the material time derivative. Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\operatorname{rot} \boldsymbol{v})=\operatorname{rot} \frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}+((\operatorname{rot} \boldsymbol{v}) \bullet \nabla) \boldsymbol{v}-(\operatorname{rot} \boldsymbol{v}) \operatorname{div} \boldsymbol{v}
$$

