Solve ONE of the following problem sets.

1. Let $\varphi, \psi, \boldsymbol{u}, \boldsymbol{v}$ and \mathbb{A} be smooth scalar, vector and tensor fields in \mathbb{R}^{3}. Show that ${ }^{1}$

$$
\begin{aligned}
\operatorname{div}(\varphi \boldsymbol{v}) & =\boldsymbol{v} \bullet(\nabla \varphi)+\varphi \operatorname{div} \boldsymbol{v} \\
\operatorname{div}(\boldsymbol{u} \times \boldsymbol{v}) & =\boldsymbol{v} \bullet \operatorname{rot} \boldsymbol{u}-\boldsymbol{u} \bullet \operatorname{rot} \boldsymbol{v} \\
\operatorname{div}(\boldsymbol{u} \otimes \boldsymbol{v}) & =[\nabla \boldsymbol{u}] \boldsymbol{v}+\boldsymbol{u} \operatorname{div} \boldsymbol{v} \\
\operatorname{div}(\varphi \mathbb{A}) & =\mathbb{A}(\nabla \varphi)+\varphi \operatorname{div} \mathbb{A} .
\end{aligned}
$$

Further, show that

$$
\begin{aligned}
\nabla(\varphi \psi) & =\psi \nabla \varphi+\varphi \nabla \psi \\
\nabla(\varphi \boldsymbol{v}) & =\boldsymbol{v} \otimes \nabla \varphi+\varphi \nabla \boldsymbol{v}, \\
\nabla(\boldsymbol{u} \bullet \boldsymbol{v}) & =(\nabla \boldsymbol{u})^{\top} \boldsymbol{v}+(\nabla \boldsymbol{v})^{\top} \boldsymbol{u}, \\
\operatorname{rot}(\varphi \boldsymbol{v}) & =\varphi \operatorname{rot} \boldsymbol{v}-\boldsymbol{v} \times \nabla \varphi .
\end{aligned}
$$

2. Let $\mathbb{U} \in \mathbb{R}^{3 \times 3}$ be a symmetric positive definite matrix, and let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix. Show that the solution \mathbb{X} of the matrix equation

$$
\mathbb{X U}+\mathbb{U X}=\mathbb{A},
$$

is given by the formula

$$
\mathbb{X}=\int_{u=0}^{+\infty} \mathrm{e}^{-u \mathbb{U}} \mathrm{Ae}^{-u \mathbb{U}} \mathrm{~d} u .
$$

(The matrix equation $\mathbb{X} U+\mathbb{U} \mathbb{X}=\mathbb{A}$ is usually called the Lyapunov equation.) Using the Lypunov equation find a formula for the derivative of the square root of a symmetric positive definite matrix. Show that

$$
\frac{\partial \sqrt{\mathbb{K}}}{\partial \mathbb{K}}[\mathrm{H}]=\int_{\tau=0}^{+\infty} \mathrm{e}^{-\tau \sqrt{\mathbb{K}}} \mathrm{H} \mathrm{e}^{-\tau \sqrt{\mathbb{K}}} \mathrm{d} \tau,
$$

where \mathbb{H} is a symmetric matrix. Moreover, show that if $\left\{\lambda_{i}\right\}_{i=1}^{3}$ are the eigenvalues of \mathbb{K}, and $H_{i j}$ denote the components of matrix H, then the components of the derivative are given by the formula

$$
\left[\frac{\partial \sqrt{\mathbb{K}}}{\partial \mathbb{K}}[\mathbb{H}]\right]_{i j}=\frac{\mathrm{H}_{i j}}{\sqrt{\lambda_{i}}+\sqrt{\lambda_{j}}}
$$

[^0]
[^0]: ${ }^{1}$ We use the notation $([\nabla \boldsymbol{u}] \boldsymbol{v})_{i}=\frac{\partial \mathrm{u}_{i}}{\partial x_{j}} \mathrm{v}_{j}$.

