1. Consider the vector field $\boldsymbol{u}=\frac{\boldsymbol{x}}{|\boldsymbol{x}|^{n}}$, where

$$
\boldsymbol{x}=_{\mathrm{def}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad|\boldsymbol{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}},
$$

and n is a natural number. Find explicit expressions for

$$
\operatorname{rot} \operatorname{rot} \boldsymbol{u}, \quad \nabla \operatorname{div} \boldsymbol{u}, \quad \Delta \boldsymbol{u}
$$

and verify that

$$
\operatorname{rot} \operatorname{rot} \boldsymbol{u}=\nabla \operatorname{div} \boldsymbol{u}-\Delta \boldsymbol{u}
$$

2. [OPTIONAL] Consider the deformation χ given by the following formulae

$$
\begin{align*}
r & =f(R) \tag{1a}\\
\varphi & =\Phi \tag{1b}\\
z & =Z \tag{1c}
\end{align*}
$$

This means that the deformation χ is given as a function that takes a point with the coordinates $[R, \Phi, Z]$ in the reference configuration - with respect to the cylindrical coordinate system-and returns the position of that point in terms of polar coordinates in the current configuration, see Figure 1.
We already know that the deformation gradient \mathbb{F} is given by the formula

$$
\mathbb{F}=\frac{\mathrm{d} f}{\mathrm{~d} R} \boldsymbol{e}_{\hat{r}} \otimes \boldsymbol{E}_{\hat{R}}+\frac{f}{R} \boldsymbol{e}_{\hat{\varphi}} \otimes \boldsymbol{E}_{\hat{\Phi}}+\boldsymbol{e}_{\hat{z}} \otimes \boldsymbol{E}_{\hat{Z}}
$$

that is

$$
\mathbb{F}=\left[\begin{array}{ccc}
\frac{\mathrm{d} f}{\mathrm{~d} R} & 0 & 0 \\
0 & \frac{f}{R} & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

In other words, show that if we have a vector $\boldsymbol{V}=\mathrm{V}^{\hat{R}} \boldsymbol{E}_{\hat{R}}+\mathrm{V}^{\hat{\Phi}} \boldsymbol{E}_{\hat{\Phi}}+\mathrm{V}^{\hat{Z}} \boldsymbol{E}_{\hat{Z}}$ in the reference configuration and a corresponding vector $\boldsymbol{c}=\mathrm{v}^{\hat{r}} \boldsymbol{e}_{\hat{r}}+\mathrm{v}^{\hat{\varphi}} \boldsymbol{e}_{\hat{\varphi}}+\mathrm{v}^{\hat{z}} \boldsymbol{e}_{\hat{z}}$ in the current configuration, then the relation between the components of the vectors reads

$$
\left[\begin{array}{c}
\mathrm{v}^{\hat{r}} \\
\mathrm{v}^{\hat{\varphi}} \\
\mathrm{v}^{\hat{z}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\mathrm{d} f}{\mathrm{~d} R} & 0 & 0 \\
0 & \frac{f}{R} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}^{\hat{R}} \\
\mathrm{~V}^{\hat{\Phi}} \\
\mathrm{V}^{\hat{Z}}
\end{array}\right] .
$$

(Recall that by the vector we mean an infinitesimal line segment placed at the given point, or, more precisely it is a tangent vector to the corresponding curve passing through the given point.)

Figure 1: Problem geometry.
In the lecture we have obtained the result via a computational trick. Show that you can recover the result by a "brute force" approach. The "brute force" approach is based on the following steps.
First we have to realise that the formula for the deformation gradient is

$$
\begin{equation*}
\mathbb{F}=\frac{\partial \boldsymbol{\chi}(\boldsymbol{X}, t)}{\partial \boldsymbol{X}}=\frac{\partial \chi^{i}(\boldsymbol{X}, t)}{\partial X_{j}} \boldsymbol{e}_{i} \otimes \boldsymbol{E}^{j} \tag{2}
\end{equation*}
$$

or in full

$$
\begin{align*}
\mathbb{F}=\frac{\partial \chi^{\hat{x}}}{\partial X} & \boldsymbol{e}_{\hat{x}} \otimes \boldsymbol{E}^{\hat{X}}+\frac{\partial \chi^{\hat{x}}}{\partial Y} \boldsymbol{e}_{\hat{x}} \otimes \boldsymbol{E}^{\hat{Y}}+\frac{\partial \chi^{\hat{x}}}{\partial Z} \boldsymbol{e}_{\hat{x}} \otimes \boldsymbol{E}^{\hat{Z}}+\frac{\partial \chi^{\hat{y}}}{\partial X} \boldsymbol{e}_{\hat{y}} \otimes \boldsymbol{E}^{\hat{X}}+\frac{\partial \chi^{\hat{y}}}{\partial Y} \boldsymbol{e}_{\hat{y}} \otimes \boldsymbol{E}^{\hat{Y}}+\frac{\partial \chi^{\hat{y}}}{\partial Z} \boldsymbol{e}_{\hat{y}} \otimes \boldsymbol{E}^{\hat{Z}} \\
& +\frac{\partial \chi^{\hat{z}}}{\partial X} \boldsymbol{e}_{\hat{z}} \otimes \boldsymbol{E}^{\hat{X}}+\frac{\partial \chi^{\hat{z}}}{\partial Y} \boldsymbol{e}_{\hat{z}} \otimes \boldsymbol{E}^{\hat{Y}}+\frac{\partial \chi^{\hat{z}}}{\partial Z} \boldsymbol{e}_{\hat{z}} \otimes \boldsymbol{E}^{\hat{Z}} . \tag{3}
\end{align*}
$$

Now we need to find a relation between the Cartesian basis $\boldsymbol{E}^{\hat{X}}, \boldsymbol{E}^{\hat{Y}}$ and $\boldsymbol{E}^{\hat{Z}}$ in the reference configuration, and the cylindrical basis $\boldsymbol{E}^{\hat{R}}, \boldsymbol{E}^{\hat{\Phi}}$ and $\boldsymbol{E}^{\hat{Z}}$ in the reference configuration. The sought relation is

$$
\begin{align*}
& \boldsymbol{E}^{\hat{X}}=\cos \Phi \boldsymbol{E}^{\hat{R}}-\sin \Phi \boldsymbol{E}^{\hat{\Phi}} \tag{4a}\\
& \boldsymbol{E}^{\hat{Y}}=\sin \Phi \boldsymbol{E}^{\hat{R}}+\cos \Phi \boldsymbol{E}^{\hat{\Phi}} \tag{4b}\\
& \boldsymbol{E}^{\hat{Z}}=\boldsymbol{E}^{\hat{Z}} \tag{4c}
\end{align*}
$$

Further we need to find a relation between the Cartesian basis $\boldsymbol{e}_{\hat{x}}, \boldsymbol{e}_{\hat{y}}$ and $\boldsymbol{e}_{\hat{z}}$ in the current configuration, and the cylindrical basis $\boldsymbol{e}_{\hat{r}}, \boldsymbol{e}_{\hat{\varphi}}$ and $\boldsymbol{e}_{\hat{z}}$ in the current configuration. The sought relation is

$$
\begin{align*}
\boldsymbol{e}_{\hat{x}} & =\cos \varphi \boldsymbol{e}_{\hat{r}}-\sin \varphi \boldsymbol{e}_{\hat{\varphi}}, \tag{5a}\\
\boldsymbol{e}_{\hat{y}} & =\sin \varphi \boldsymbol{e}_{\hat{r}}+\cos \varphi \boldsymbol{e}_{\hat{\varphi}}, \tag{5b}\\
\boldsymbol{e}_{\hat{z}} & =\boldsymbol{e}_{\hat{\boldsymbol{z}}} . \tag{5c}
\end{align*}
$$

Now we are ready to substitute the formulae for $\boldsymbol{E}^{\hat{X}}, \boldsymbol{E}^{\hat{Y}}, \boldsymbol{E}^{\hat{Z}}$ and $\boldsymbol{e}_{\hat{x}}, \boldsymbol{e}_{\hat{y}}, \boldsymbol{e}_{\hat{z}}$ into (3).
The next step is to find a suitable expressions for the partial derivatives $\frac{\partial \chi^{\hat{x}}}{\partial X}, \frac{\partial \hat{x}}{\partial Y}, \frac{\partial \chi^{\hat{x}}}{\partial Z}$ and so on. The aim is to express the derivatives in terms of the derivatives of functions r, φ and z with respect to the reference coordinates R, Φ and Z. Recalling that the relation between the cylindrical coordinates $[r, \varphi, z]$ and the Cartesian coordinates $[x, y, z]$ is

$$
\begin{align*}
& x=r \cos \varphi, \tag{6a}\\
& y=r \sin \varphi, \tag{6b}\\
& z=z \tag{6c}
\end{align*}
$$

and that the relation between the cylindrical coordinates $[R, \Phi, Z]$ and the Cartesian coordinates $[X, Y, Z]$ reads

$$
\begin{align*}
X & =R \cos \Phi \tag{7a}\\
Y & =R \sin \Phi \tag{7b}\\
Z & =Z \tag{7c}
\end{align*}
$$

we see that the application of the chain rule yields

$$
\begin{align*}
\frac{\partial \chi^{\hat{x}}}{\partial X}=\frac{\partial}{\partial X}(r \cos \varphi)=\frac{\partial r}{\partial X} \cos \varphi & -r \sin \varphi \frac{\partial \varphi}{\partial X} \\
& =\left(\frac{\partial r}{\partial R} \frac{\partial R}{\partial X}+\frac{\partial r}{\partial \Phi} \frac{\partial \Phi}{\partial X}+\frac{\partial r}{\partial Z} \frac{\partial Z}{\partial X}\right) \cos \varphi-r \sin \varphi\left(\frac{\partial \varphi}{\partial R} \frac{\partial R}{\partial X}+\frac{\partial \varphi}{\partial \Phi} \frac{\partial \Phi}{\partial X}+\frac{\partial \varphi}{\partial Z} \frac{\partial Z}{\partial X}\right) . \tag{8}
\end{align*}
$$

Formulae (7) imply that

$$
\begin{align*}
& \frac{\partial R}{\partial X}=\cos \Phi \tag{9a}\\
& \frac{\partial R}{\partial Y}=\sin \Phi \tag{9b}\\
& \frac{\partial \Phi}{\partial X}=-\frac{\sin \Phi}{R} \tag{9c}\\
& \frac{\partial \Phi}{\partial Y}=\frac{\cos \Phi}{R} \tag{9d}
\end{align*}
$$

hence (8) yields-for the particular deformation (1)-

$$
\begin{equation*}
\frac{\partial \chi^{\hat{x}}}{\partial X}=\frac{\mathrm{d} f}{\mathrm{~d} R} \cos ^{2} \Phi+\frac{f}{R} \sin ^{2} \Phi \tag{10a}
\end{equation*}
$$

where we have used the fact that partial derivatives $\frac{\partial r}{\partial \Phi}$ and $\frac{\partial r}{\partial \Phi}$ and all partial derivatives with respect to Z vanish, and
that $\frac{\partial \varphi}{\partial \Phi}=1$. Repeating the same procedure for the remaining partial derivatives yields

$$
\begin{align*}
\frac{\partial \chi^{\hat{x}}}{\partial Y} & =\left(\frac{\mathrm{d} f}{\mathrm{~d} R}-\frac{f}{R}\right) \cos \Phi \sin \Phi \tag{10b}\\
\frac{\partial \chi^{\hat{y}}}{\partial X} & =\left(\frac{\mathrm{d} f}{\mathrm{~d} R}-\frac{f}{R}\right) \cos \Phi \sin \Phi \tag{10c}\\
\frac{\partial \chi^{\hat{y}}}{\partial Y} & =\frac{\mathrm{d} f}{\mathrm{~d} R} \sin ^{2} \Phi+\frac{f}{R} \cos ^{2} \Phi \tag{10d}\\
\frac{\partial \chi^{\hat{z}}}{\partial Z} & =1 \tag{10e}
\end{align*}
$$

and all the other partial derivatives vanish. Finally, substituting (4), (5) and (10) into (3) leads upon tedious but straightforward calculation to formula

$$
\begin{equation*}
\mathbb{F}=\frac{\mathrm{d} f}{\mathrm{~d} R} \boldsymbol{e}_{\hat{r}} \otimes \boldsymbol{E}^{\hat{R}}+\frac{f}{R} \boldsymbol{e}_{\hat{\varphi}} \otimes \boldsymbol{E}^{\hat{\Phi}}+\boldsymbol{e}_{\hat{z}} \otimes \boldsymbol{E}^{\hat{Z}} \tag{11}
\end{equation*}
$$

