1. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ a $\mathbb{B} \in \mathbb{R}^{3 \times 3}$ be invertible matrices. Show that

$$
\operatorname{det}(\mathbb{A}+\mathbb{B})=\operatorname{det} \mathbb{A}+\operatorname{Tr}\left(\mathbb{A}^{\top} \operatorname{cof} \mathbb{B}\right)+\operatorname{Tr}\left(\mathbb{B}^{\top} \operatorname{cof} \mathbb{A}\right)+\operatorname{det} \mathbb{B}
$$

where $\operatorname{cof} \mathbb{C}=_{\operatorname{def}}(\operatorname{det} \mathbb{C}) \mathbb{C}^{-\top}$ denotes the cofactor matrix of matrix \mathbb{C}.

