1. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be an invertible matrix and let \boldsymbol{u} and \boldsymbol{v} be arbitrary fixed vectors in \mathbb{R}^{3} such that $\boldsymbol{v} \bullet \mathbb{A}^{-1} \boldsymbol{u} \neq-1$. Show that

$$
(\mathbb{A}+\boldsymbol{u} \otimes \boldsymbol{v})^{-1}=\mathbb{A}^{-1}-\frac{1}{1+\boldsymbol{v} \bullet \mathbb{A}^{-1} \boldsymbol{u}}\left(\mathbb{A}^{-1} \boldsymbol{u}\right) \otimes\left(\mathbb{A}^{-\top} \boldsymbol{v}\right)
$$

The formula is usually referred to as the Sherman-Morrison formula.
2. We already know that

$$
\epsilon_{i j k} \epsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m},
$$

and let us further assume that we also know that

$$
\epsilon_{i j k} \epsilon_{l m n}=\operatorname{det}\left[\begin{array}{lll}
\delta_{i l} & \delta_{i m} & \delta_{i n} \\
\delta_{j l} & \delta_{j m} & \delta_{j n} \\
\delta_{k l} & \delta_{k m} & \delta_{k n}
\end{array}\right]
$$

Show that the Levi-Civita symbol satisfies the identities

$$
\begin{aligned}
& \epsilon_{i j k} \epsilon_{i j n}=2 \delta_{k n} \\
& \epsilon_{i j k} \delta_{l m}=\epsilon_{j k m} \delta_{i l}+\epsilon_{k i m} \delta_{j l}+\epsilon_{i j m} \delta_{k l}
\end{aligned}
$$

