1. Consider a hollow cylinder of initial inner radius $R_{\text {in }}$ and outer radius $R_{\text {out }}$, see Figure 1 , and assume that the cylinder is in this configuration in a stress free state. Further, assume that the material of which is the cylinder made is a homogeneous isotropic incompressible elastic material specified by constitutive relation

$$
\mathbb{T}=-p \rrbracket+\mu(\mathbb{B}-\mathbb{\square}),
$$

where μ is a positive constant and \mathbb{B} denotes the left Cauchy-Green tensor with respect to the initial configuration with the inner radius $R_{\text {in }}$ and the outer radius $R_{\text {out }}$.
Let us now apply a pressure $P_{\text {in }}$ inside the cylinder and a pressure $P_{\text {out }}$ outside the cylinder. If the inner pressure is higher than the outer pressure, then the cylinder inflates. The task is to find a relation between the relative change in the void area

$$
c==_{\mathrm{def}} \frac{r_{\mathrm{in}}^{2}-R_{\mathrm{in}}^{2}}{R_{\mathrm{in}}^{2}}
$$

and the pressure difference $P_{\text {in }}-P_{\text {out }}$.
Find the answer using linearised elasticity theory, that is use the governing equations in the form

$$
\begin{aligned}
\operatorname{div} \pi & =\mathbf{0} \\
\operatorname{Tr}(\nabla \boldsymbol{U}) & =0
\end{aligned}
$$

where $\tau={ }_{\text {def }}-p \rrbracket+2 \mu \Subset$ and $\mathbb{C}=_{\text {def }} \frac{1}{2}\left(\nabla \boldsymbol{U}+(\nabla \boldsymbol{U})^{\top}\right)$. The boundary conditions read

$$
\begin{aligned}
\left.\tau \boldsymbol{E}_{\hat{Z}}\right|_{R=R_{\text {in }}} & =\left.P_{\mathrm{in}} \boldsymbol{E}_{\hat{Z}}\right|_{R=R_{\mathrm{in}}} \\
\left.\tau \boldsymbol{E}_{\hat{Z}}\right|_{R=R_{\text {out }}} & =\left.P_{\text {out }} \boldsymbol{E}_{\hat{Z}}\right|_{R=R_{\text {out }}}
\end{aligned}
$$

while the displacement \boldsymbol{U} is assumed to take the form

$$
\begin{aligned}
\mathrm{U}^{\hat{r}} & =g(R) \\
\mathrm{U}^{\hat{\varphi}} & =0 \\
\mathrm{U}^{\hat{z}} & =0
\end{aligned}
$$

The result should be identical to the result

$$
P_{\mathrm{out}}-P_{\mathrm{in}} \approx \mu \int_{r=R_{\mathrm{in}}}^{R_{\mathrm{out}}} \frac{2 c R_{\mathrm{in}}^{2}}{r^{3}} \mathrm{~d} r
$$

that we have already obtained via linearisation of the solution to the complete system of nonlinear governing equations.

Figure 1: Inflation of a hollow cylinder made of an incompressible elastic material.
The formula for the divergence of a tensorial quantity \mathbb{A} in the cylindrical coordinate system reads

$$
\operatorname{div} \mathbb{A}=\left[\begin{array}{c}
\frac{\partial \mathrm{A}^{\hat{r}_{\hat{r}}}}{\partial r}+\frac{1}{r}\left(\frac{\partial \mathrm{~A}^{\hat{r}} \hat{\varphi}_{\hat{\varphi}}}{\partial \varphi}-\mathrm{A}_{\hat{\varphi}}^{\hat{\varphi}}+\mathrm{A}_{\hat{r}}^{\hat{r}_{\hat{r}}}\right)+\frac{\partial \mathrm{A}^{\hat{r}}}{\partial z} \\
\frac{\partial \mathrm{~A}_{\hat{z}}{ }_{\hat{\hat{r}}}}{\partial r}+\frac{1}{r}\left(\frac{\partial \mathrm{~A}^{\hat{\varphi}}{ }_{\varphi}}{\partial \varphi}+\mathrm{A}_{\hat{\varphi}}^{\hat{\varphi}}+\mathrm{A}_{\hat{r}}^{\hat{\varphi}_{\hat{r}}}\right)+\frac{\partial \mathrm{A}_{\hat{z}}}{\partial z} \\
\frac{\partial \mathrm{~A}_{\hat{z}}^{\hat{r}}}{\partial r}+\frac{1}{r}\left(\frac{\partial \mathrm{~A}_{\hat{\varphi}}}{\partial \varphi}+\mathrm{A}_{\hat{r}}^{\hat{r}_{\hat{r}}}\right)+\frac{\partial \mathrm{A}_{\hat{z}}^{z}}{\partial z}
\end{array}\right],
$$

while the formula for the gradient of a vector field \boldsymbol{v} reads

$$
\nabla \boldsymbol{v}=\left[\begin{array}{ccc}
\frac{\partial \mathrm{v}^{\hat{r}}}{\partial r} & \frac{1}{r} \frac{\partial \mathrm{v}^{\hat{r}}}{\partial \varphi}-\frac{\mathrm{v}^{\hat{\varphi}}}{r} & \frac{\partial \mathrm{v}^{\hat{r}}}{\partial z} \\
r \frac{\partial}{\partial r}\left(\frac{\mathrm{v}^{\varphi}}{r}\right)+\frac{\mathrm{v}^{\hat{\varphi}}}{r} & \frac{1}{r} \frac{\partial \mathrm{v}^{\varphi}}{\partial \varphi}+\frac{\mathrm{v}^{\hat{r}}}{r} & \frac{\partial \mathrm{v}^{\hat{\varphi}}}{\partial z} \\
\frac{\partial \mathrm{v}^{\hat{z}}}{\partial r} & \frac{1}{r} \frac{\partial \mathrm{v}^{\hat{z}}}{\partial \varphi} & \frac{\partial \mathrm{v}^{\hat{z}}}{\partial z}
\end{array}\right] .
$$

You are now in the position to solve some interesting problems. The end of the year is approaching, hence it makes sense to ask the question "how to extrude a cork from the neck of a bottle efficiently". Using continuum mechanics one can answer the question, see De Pascalis et al. (2007).

De Pascalis, R., M. Destrade, and G. Saccomandi (2007). The stress field in a pulled cork and some subtle points in the semi-inverse method of nonlinear elasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 463 (2087), 2945-2959.

