1. Let us consider Eulerian description. Some people claim that the balance of mass and balance of momentum read

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \boldsymbol{v}) = 0,$$
$$\frac{\partial}{\partial t}(\rho \boldsymbol{v}) + \operatorname{div}(\rho \boldsymbol{v} \otimes \boldsymbol{v}) = \operatorname{div} \mathbb{T} + \rho \boldsymbol{b},$$

whilst the notation is the same as ours (ρ is the density, v Eulerian velocity field, \mathbb{T} Cauchy stress tensor and b is body force). Are these equations equivalent to the equations we have derived at the last lecture? Why?

2. Consider the deformation $\boldsymbol{x} = \boldsymbol{\chi}(\boldsymbol{X},t)$ given by the following formulae

$$\begin{aligned} \mathbf{x}_1 &= \lambda(t) \mathbf{X}_1, \\ \mathbf{x}_2 &= \left[\lambda(t)\right]^{-\frac{1}{2}} \mathbf{X}_2, \\ \mathbf{x}_3 &= \left[\lambda(t)\right]^{-\frac{1}{2}} \mathbf{X}_3, \end{aligned}$$

where $\lambda(t)$ is a positive function of time, $\lambda(t_0) = 1$. Find explicit formulae for the Lagrangian velocity field V, Eulerian velocity field v, deformation gradient \mathbb{F} , stretch tensor \mathbb{U} and rotation tensor \mathbb{R} from the polar decomposition of \mathbb{F} , velocity gradient \mathbb{L} , symmetric part of the velocity gradient \mathbb{D} , left Cauchy–Green tensor \mathbb{B} , right Cauchy–Green tensor \mathbb{C} and Green–Saint-Venant strain \mathbb{E} .

Is the deformation isochoric? (Isochoric = preserves volume.)