1. Show that

$$
\left.\frac{\mathrm{d} \mathbb{U}_{t}(\boldsymbol{x}, \tau)}{\mathrm{d} \tau}\right|_{\tau=t}=\mathbb{D}(\boldsymbol{x}, t)
$$

where $\mathbb{U}_{t}(\boldsymbol{x}, \tau)$ denotes the relative stretch tensor, that is the symmetric positive definite matrix from the polar decomposition of the relative deformation gradient $\mathbb{F}_{t}(\boldsymbol{x}, \tau)$,

$$
\mathbb{F}_{t}(\boldsymbol{x}, \tau)=\mathbb{R}_{t}(\boldsymbol{x}, \tau) \mathbb{U}_{t}(\boldsymbol{x}, \tau),
$$

and $\mathbb{D}(\boldsymbol{x}, t)$ and $\mathbb{W}(\boldsymbol{x}, t)$ denote the symmetric and skew-symmetric part of the velocity gradient. Recall that we already know that

$$
\begin{aligned}
\left.\frac{\mathrm{dF}_{t}(\boldsymbol{x}, \tau)}{\mathrm{d} \tau}\right|_{\tau=t} & =\mathbb{L}(\boldsymbol{x}, t), \\
\mathbb{Q}(\boldsymbol{x}, t) & =\mathbb{D}(\boldsymbol{x}, t)+\mathbb{W}(\boldsymbol{x}, t), \\
\left.\mathbb{F}_{t}(\boldsymbol{x}, \tau)\right|_{\tau=t} & =\mathbb{0},
\end{aligned}
$$

where $\mathbb{L}(\boldsymbol{x}, t)$ denotes the velocity gradient.
2. Let \boldsymbol{v} denote the Eulerian velocity field. Show that

$$
\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}=\frac{\partial \boldsymbol{v}}{\partial t}+(\operatorname{rot} \boldsymbol{v}) \times \boldsymbol{v}+\nabla\left(\frac{1}{2} \boldsymbol{v} \bullet \boldsymbol{v}\right)
$$

where $\frac{\mathrm{d}}{\mathrm{d} t}$ is the material time derivative. Further, show that

$$
\dot{\operatorname{rot} \boldsymbol{v}}=\operatorname{rot} \dot{\overline{\boldsymbol{v}}}+((\operatorname{rot} \boldsymbol{v}) \bullet \nabla) \boldsymbol{v}-(\operatorname{rot} \boldsymbol{v}) \operatorname{div} \boldsymbol{v}
$$

