1. Show that

$$
\begin{aligned}
& \frac{\partial^{2} \mathrm{I}_{1}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=0 \\
& \frac{\partial^{2} \mathrm{I}_{2}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=(\operatorname{Tr} \mathbb{C})(\operatorname{Tr} \mathbb{B})-\operatorname{Tr}(\mathbb{C} \mathbb{B}), \\
& \frac{\partial^{2} \mathrm{I}_{3}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=(\operatorname{det} \mathbb{A})\left(\operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{B}\right) \operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{C}\right)-\operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{B} \mathbb{A}^{-1} \mathbb{C}\right)\right)
\end{aligned}
$$

where $I_{1}(\mathbb{A}), I_{2}(\mathbb{A})$ and $I_{3}(\mathbb{A})$ denote the principal invariants of matrix \mathbb{A}, that is

$$
\begin{aligned}
& \mathrm{I}_{1}(\mathbb{A})=\operatorname{def} \operatorname{Tr} \mathbb{A} \\
& \mathrm{I}_{2}(\mathbb{A})=\operatorname{def} \frac{1}{2}\left((\operatorname{Tr} \mathbb{A})^{2}-\operatorname{Tr}\left(\mathbb{A}^{2}\right)\right) \\
& \mathrm{I}_{3}(\mathbb{A})=\operatorname{def} \operatorname{det} \mathbb{A}
\end{aligned}
$$

2. [Optional] Let \mathbb{U} be the symmetric positive definite matrix from the polar decomposition theorem, that is $\mathbb{U}=\left(\mathbb{F}^{\top} \mathbb{F}\right)^{\frac{1}{2}}$, where \mathbb{F} is an invertible matrix with $\operatorname{det} \mathbb{F}>0$. Show that

$$
\frac{\partial U}{\partial \mathbb{F}}[\mathbb{B}]=\int_{s=0}^{+\infty} \mathrm{e}^{-U s}\left(\mathbb{B}^{\top} \mathbb{F}+\mathbb{F}^{\top} \mathbb{B}\right) \mathrm{e}^{-U s} \mathrm{~d} s
$$

Please note that $\frac{\partial f(A)}{\partial A}[\mathbb{B}]$ is just another notation for Gâteaux derivative, that is

$$
\frac{\partial \mathfrak{f}(\mathbb{A})}{\partial \mathbb{A}}[\mathbb{B}]={ }_{\operatorname{def}} D_{\mathbb{A}} \mathfrak{f}(\mathbb{A})[\mathbb{B}]
$$

