1. Let $\boldsymbol{a} \in \mathbb{R}^{3}$ be a unit vector, and let $\boldsymbol{u} \in \mathbb{R}^{3}$ be an arbitrary vector. Show that vectors $\boldsymbol{a} \times \boldsymbol{u}$ and $(\mathbb{a}-\boldsymbol{a} \otimes \boldsymbol{a}) \boldsymbol{u}$ have the same length.
2. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ a $\mathbb{B} \in \mathbb{R}^{3 \times 3}$ be invertible matrices. Show that

$$
\operatorname{det}(\mathbb{A}+\mathbb{B})=\operatorname{det} \mathbb{A}+\operatorname{Tr}\left(\mathbb{A}^{\top} \operatorname{cof} \mathbb{B}\right)+\operatorname{Tr}\left(\mathbb{B}^{\top} \operatorname{cof} \mathbb{A}\right)+\operatorname{det} \mathbb{B},
$$

where $\operatorname{cof} \mathbb{C}={ }_{\operatorname{def}}(\operatorname{det} \mathbb{C}) \mathbb{C}^{-\top}$ denotes the cofactor matrix of matrix \mathbb{C}.
3. [Optional] We have defined the norm of a matrix \mathbb{A} as

$$
|\mathbb{A}|=_{\text {def }}\left(\operatorname{Tr}\left(\mathbb{A}^{\top}\right)\right)^{\frac{1}{2}}
$$

If one interprets the matrix as a linear mapping, there is another possibility to define a norm, namely

$$
|\mathbb{A}|_{\mathrm{op}}=\operatorname{def} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}, \boldsymbol{x} \neq \mathbf{0}} \frac{|\mathbb{A} \boldsymbol{x}|_{\mathbb{R}^{3}}}{|\boldsymbol{x}|_{\mathbb{R}^{3}}} .
$$

(This is the way how the norm is defined in functional analysis, $\|_{\mathbb{R}^{3}}$ denotes the standard Euclidean norm.) Is the norm $|\mathbb{A}|_{\mathrm{op}}$ the same norm as $|\mathbb{A}|$? If not, show that it is an equivalent norm. (Recall that two norms $|\cdot|_{\mathrm{A}}$ and $|\cdot|_{\mathrm{B}}$ on space X are equivalent if there exist positive constants c_{1} and c_{2} such that $c_{1}|\boldsymbol{x}|_{\mathrm{A}} \leq|\boldsymbol{x}|_{\mathrm{B}} \leq c_{2}|\boldsymbol{x}|_{\mathrm{A}}$ holds for all $\boldsymbol{x} \in X$.)

Please check your notes from previous lectures such as mathematical analysis, and be ready for the discussion of the notions such as the line integral of a scalar/vector field, the surface integral of a scalar/vector field, potential of a vector field, Stokes theorem, operators div and rot. I need to know exactly what are you already familiar with, and what we need to carefully define/discuss in the lecture.

For those who are interested in additional reading: Detailed discussion of representation theorems for tensorial functions can be found in a review paper by Zheng (1994). Detailed discussion of the relation between proper orthogonal matrices and rotations can be found in (Ciarlet, 1988, Theorem 1.8-1).

Ciarlet, P. G. (1988). Mathematical elasticity. Vol. I, Volume 20 of Studies in Mathematics and its Applications. Amsterdam: North-Holland Publishing Co. Three-dimensional elasticity.

Zheng, Q.-S. (1994). Theory of representations for tensor functions - A unified invariant approach to constitutive equations. Applied Mechanics Reviews 47(11), 545-587.

