NMMO401 CONTINUUM MECHANICS, WINTER SEMESTER 2016/2017 SYLLABUS

VÍT PRU゚ŠA

Topics/notions printed in italics are not a part of the exam. All other topics/notions are expected to mastered at the level of a reflex action.

- Preliminaries.
- Linear algebra.
* Scalar product, vector product, mixed product, tensor product. Transposed matrix.
* Tensors. Inertia tensor as an example of a tensorial quantity in mechanics.
* Cofactor matrix $\operatorname{cof} \mathbb{A}$ and determinant $\operatorname{det} \mathbb{A}$. Geometrical interpretation.
* Cayley-Hamilton theorem, characteristic polynomial, eigenvectors, eigenvalues.
* Trace of a matrix.
* Invariants of a matrix and their relation to the eigenvalues and the mixed product.
* Properties of proper orthogonal matrices, angular velocity.
* Polar decomposition. Geometrical interpretation.
* Spectral decomposition.
- Elementary calculus.
* Matrix functions. Exponential of a matrix. Skew-symmetric matrices as infinitesimal generators of the group of rotations.
* Representation theorem for scalar valued isotropic tensorial functions and tensor valued isotropic tensorial functions.
* Gâteaux derivative, Fréchet derivative. Derivatives of the invariants of a matrix.
* Operators ∇, div and rot for scalar and vector fields. Operators div and rot for tensor fields. Abstract definitions and formulae in Cartesian coordinate system. Identities in tensor calculus.
- Line, surface and volume integrals.
* Line integral of a scalar valued function $\int_{\gamma} \varphi \mathrm{d} \boldsymbol{X}$, line integral of a vector valued function $\int_{\gamma} \boldsymbol{v} \bullet \mathrm{d} \boldsymbol{X}$.
* Surface integral of a scalar valued function $\int_{S} \varphi \mathrm{dS}$, surface integral of a vector valued function $\int_{S} \boldsymbol{v} \bullet \mathrm{~d} \boldsymbol{S}$, surface Jacobian.
* Volume integral, Jacobian matrix.
- Stokes theorem and its consequences.
* Green identities.
* Potential vector field, path independent integrals, curl free vector fields. Characterisation of potential vector fields.
* Helmholtz decomposition, $\boldsymbol{v}=-\nabla \varphi+\operatorname{rot} \mathbb{A}$.
* Korn equality.
- Elementary concepts in classical physics.
* Newton laws.
- Kinematics of continuous medium.
- Basic concepts.
* Notion of continuous body. Abstract body, placer, configuration.
* Reference and current configuration. Lagrangian and Eulerian description.
* Deformation/motion χ.
* Local and global invertibility of the motion/deformation.
* Deformation gradient \mathbb{F} and its geometrical interpretation. Polar decomposition of the deformation gradient and its geometrical interpretation.
* Deformation gradient and polar decompostion for simple shear.
* Displacement \boldsymbol{U}.
* Deformation of infinitesimal line, surface a volume elements. Concept of isochoric motion.
* Lagrangian velocity field \boldsymbol{V}, Eulerian velocity field \boldsymbol{v}. Material time derivative $\frac{\mathrm{d}}{\mathrm{d} t}$ of Eulerian quantities.
* Streamlines and pathlines (trajectories).
* Relative deformation/motion. Interpretation of \mathbb{D} and \mathbb{W} via time derivatives of relative deformation gradient.
* Spatial velocity gradient \mathbb{L}, its symmetric \mathbb{D} and skew-symmetric part \mathbb{W}.
- Strain measures.
* Left and right Cauchy-Green tensor, \mathbb{B} and \mathbb{C}.
* Green-Saint-Venant strain tensor \mathbb{E}, Euler-Almansi strain tensor e. Geometrical interpretation.
* Linearised strain ©.
- Compatibility conditions for linearised strain \Subset in \mathbb{R}^{2}. Compatibility conditions for linearised strain \Subset in \mathbb{R}^{3}.
- Rate quantities.
* Rate of change of Green-Saint-Venant strain, rate of change of Euler-Almansi strain and their relation to the symmetric part of the velocity gradient \mathbb{D}.
* Rate of change of infinitesimal line, surface and volume elements. Divergence of Eulerian velocity field and its relation to the change of volume.
- Kinematics of moving surfaces.
* Lagrange criterion for material surfaces.
- Reynolds transport theorem.
- Dynamics of continuous medium.
- Mechanics.
* Balance laws for continuous medium as counterparts of the classical laws of Newtonian physics of point particles.
* Concept of contact/surface forces. Existence of the Cauchy stress tensor \mathbb{T} (tetrahedron argument).
* Pure tension, pure compression, tensile stress, shear stress.
* Balance of mass, linear momentum and angular momentum in Eulerian description.
* Balance of angular momentum and its implications with respect to the symmetry of the Cauchy stress tensor. Proof of the symmetry of the Cauchy stress tensor.
* Balance of mass, linear momentum and angular momentum in Lagrangian description.
* First Piola-Kirchhoff tensor \mathbb{T}_{R}. Piola transformation.
* Formulation of boundary value problems in Eulerian and Lagrangian descripition, transformation of traction boundary conditions from the current to the reference configuration.
- Elementary concepts in thermodynamics of continuous medium.
* Internal energy, heat flux.
* Balance of total energy in Eulerian and Lagrangian description.
* Balance of internal energy in Eulerian and Lagrangian description.
* Referential heat flux.
- Boundary conditions.
- Geometrical linearisation. Incompressibility condition in the linearised setting. Specification of the boundary conditions in the linearised setting.
- Simple constitutive relations.
- Pressure and thermodynamic pressure. Derivation of compressible and incompressible Navier-Stokes fluid model via the representation theorem for tensor valued isotropic tensorial functions.
- Cauchy elastic material. Derivation via the representation theorem for tensor valued isotropic tensorial functions.
- Physical units, dimensionless quantities, Reynolds number.
- Simple problems in mechanics of continuous medium.
- Archimedes law.
- Deformation of a cylinder (linearised elasticity). Hooke law.
- Inflation of a hollow cylinder made of an incompressible isotropic elastic solid. (Comparison of linearised theory and fully nonlinear theory.)
- Isothermal atmosphere versus swimming pool. (Difference between the notion of the pressure in the case of compressible and incompressible Navier-Stokes fluid model.)
- Stokes formula via dimensional analysis.
- Waves in linearised isotropic elastic solid.

Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, Praha 8 - Karlín, CZ 18675 , Czech Republic
E-mail address: prusv@karlin.mff.cuni.cz

