NMMO401 CONTINUUM MECHANICS, WINTER SEMESTER 2015/2016 SYLLABUS

VÍT PRŮŠA

Topics/notions printed in *italics* are not a part of the exam. All other topics/notions are expected to mastered at the level of a reflex action.

- Preliminaries.
 - Linear algebra.
 - * Scalar product, vector product, mixed product, tensor product. Transposed matrix.
 - * Tensors. Inertia tensor as an example of a tensorial quantity in mechanics.
 - $\ast\,$ Cofactor matrix cof $\mathbb A$ and determinant det $\mathbb A.$ Geometrical interpretation.
 - * Cayley–Hamilton theorem, characteristic polynomial, eigenvectors, eigenvalues.
 - * Trace of a matrix.
 - * Invariants of a matrix and their relation to the eigenvalues and the mixed product.
 - * Properties of proper orthogonal matrices, angular velocity.
 - * Polar decomposition. Geometrical interpretation.
 - * Spectral decomposition.
 - Elementary calculus.
 - * Matrix functions. Exponential of a matrix. Skew-symmetric matrices as infinitesimal generators of the group of rotations.
 - * Representation theorem for scalar valued isotropic tensorial functions and tensor valued isotropic tensorial functions.
 - * Gâteaux derivative, Fréchet derivative. Derivatives of the invariants of a matrix.
 - * Operators ∇ , div and rot for scalar and vector fields. Operators div and rot for tensor fields. Abstract definitions and formulae in Cartesian coordinate system. Identities in tensor calculus.
 - Line, surface and volume integrals.
 - * Line integral of a scalar valued function $\int_{\gamma} \varphi \, \mathrm{d} X$, line integral of a vector valued function $\int_{\gamma} v \bullet \mathrm{d} X$.
 - * Surface integral of a scalar valued function $\int_{S} \varphi \, dS$, surface integral of a vector valued function $\int_{S} \boldsymbol{v} \cdot d\boldsymbol{S}$, surface Jacobian.
 - * Volume integral, Jacobian matrix.
 - Stokes theorem and its consequences.
 - * Green identities.
 - * Potential vector field, path independent integrals, curl free vector fields. Characterisation of potential vector fields.
 - * Helmholtz decomposition, $\boldsymbol{v} = -\nabla \varphi + \operatorname{rot} \mathbb{A}$.
 - * Korn equality.
 - Elementary concepts in classical physics.
 - * Newton laws.
 - * Galilei principle of relativity, non-inertial reference frame.
 - * Fictitious forces (Euler, centrifugal, Coriolis).
- Kinematics of continuous medium.
 - Basic concepts.
 - * Notion of continuous body. Abstract body, placer, configuration.
 - $\ast\,$ Reference and current configuration. Lagrangian and Eulerian description.
 - * Deformation/motion χ .
 - $\ast\,$ Local and global invertibility of the motion/deformation.
 - * Deformation gradient $\mathbb F$ and its geometrical interpretation. Polar decomposition of the deformation gradient and its geometrical interpretation.
 - * Deformation gradient for simple shear, pure bending and inflation of a hollow cylinder.
 - * Displacement U.
 - $\ast\,$ Deformation of infinitesimal line, surface a volume elements. Concept of isochoric motion.
 - * Lagrangian velocity field V, Eulerian velocity field v. Material time derivative $\frac{d}{dt}$ of Eulerian quantities.
 - * Streamlines and pathlines (trajectories).
 - * Relative deformation/motion.
 - * Spatial velocity gradient \mathbb{L} , its symmetric \mathbb{D} and skew-symmetric part \mathbb{W} . Relation of \mathbb{D} and \mathbb{W} to the time derivatives of the relative deformation/motion.

Date: January 13, 2016.

- Strain measures.
 - * Left and right Cauchy–Green tensor, $\mathbb B$ and $\mathbb C.$
 - * Green–Saint-Venant strain tensor \mathbb{E} , Euler–Almansi strain tensor e. Geometrical interpretation.
 - * Linearised strain \mathfrak{c} .
- Compatibility conditions for linearised strain \mathfrak{e} .
- Rate quantities.
 - * Rate of change of Green–Saint-Venant strain, rate of change of Euler–Almansi strain and their relation to D.
 - * Rate of change of infinitesimal line, surface and volume elements. Divergence of Eulerian velocity field and its relation to the change of volume.
- Kinematics of moving surfaces.
 - * Lagrange criterion for material surfaces.
 - * Formula for the projection of the velocity of the surface to the direction parallel to the normal to the surface.
- Reynolds transport theorem. Reynolds transport theorem in the presence of discontinuities.
- Dynamics of continuous medium.
 - Mechanics.
 - * Balance laws for continuous medium as counterparts of the classical laws of Newtonian physics of point particles.
 - * Concept of contact/surface forces. Existence of the Cauchy stress tensor \mathbb{T} (tetrahedron argument).
 - * Pure tension, pure compression, tensile stress, shear stress.
 - * Balance of mass, linear momentum and angular momentum in Eulerian description.
 - * Balance of angular momentum and its implications with respect to the symmetry of the Cauchy stress tensor.
 - * Balance of mass, linear momentum and angular momentum in Lagrangian description.
 - * First Piola–Kirchhoff tensor $\mathbb{T}_{\mathrm{R}}.$ Piola transformation.
 - * Formulation of boundary value problems in Eulerian and Lagrangian descripition, transformation of traction boundary conditions from the current to the reference configuration.
 - Elementary concepts in thermodynamics of continuous medium.
 - $\ast\,$ Internal energy, heat flux.
 - * Balance of total energy in Eulerian and Lagrangian description.
 - * Balance of internal energy in Eulerian and Lagrangian description.
 - * Referential heat flux.
 - Boundary conditions.
 - Geometrical linearisation. Incompressibility condition in the linearised setting. Specification of the boundary conditions in the linearised setting.
 - Balance laws in the presence of discontinuities.
- Simple constitutive relations.
 - Pressure and thermodynamic pressure. Derivation of compressible and incompressible Navier–Stokes fluid model via the representation theorem for tensor valued isotropic tensorial functions.
 - Cauchy elastic material. Derivation via the representation theorem for tensor valued isotropic tensorial functions.
 - Physical units, dimensionless quantities, Reynolds number.
- Simple problems in mechanics of continuous medium.
 - Archimedes law.
 - Deformation of a cylinder (linearised elasticity). Hooke law.
 - Inflation of a hollow cylinder made of an incompressible isotropic elastic solid. (Comparison of linearised theory and fully nonlinear theory.)
 - Isothermal atmosphere versus swimming pool. (Difference between the notion of the pressure in the case of compressible and incompressible Navier–Stokes fluid model.)
 - Stokes formula via dimensional analysis.
 - Waves in compressible Navier-Stokes fluid.
 - Waves in linearised isotropic elastic solid.
 - Stability of the rest state of the incompressible Navier-Stokes fluid.
 - Pressure driven flow of incompressible Navier-Stokes fluid in a pipe of circular cross section.

FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY IN PRAGUE, SOKOLOVSKÁ 83, PRAHA 8 – KARLÍN, CZ 186 75, CZECH REPUBLIC *E-mail address*: prusv@karlin.mff.cuni.cz