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INTRODUCTION

The production of a 'wake' behind solid bodies has been treated by different authors.
S. Goldstein (l) and S. H. Hollingdale(2) have discussed the laminar wake behind a
flat plate, while the wake of a two-dimensional grid has been treated for the turbulent
case alone using L. Prandtl's 'Mischungsweg' theory by E. Anderlik and Gran
OlssonO), (4).

This paper presents an exact two-dimensional solution of the Navier-Stokes equa-
tions with a periodicity in one direction, which may represent the wake of a two-
dimensional grid.

SOLUTION OF THE EQUATIONS OF MOTION

The equations of a two-dimensional motion are

du' . ,,du' ,du' 1 d
+ { u + u ) + v =

dv' , ,,dv' ,dv' 1 dp' „,„ ,

where u0 is the average velocity in the x direction,
u0 + u'(x', y') is the local velocity in the x direction,
v'(x', y') is the local velocity in the y direction,
p'{x',y') is the pressure,
v is the kinematic viscosity, and

Eliminating the pressure and introducing the vorticity

W ~dx~' dy"

we obtain from equations (la) and (16)

Introduce dimensionless quantities using uQ as reference velocity and M (the spacing
of the grid) as reference length; thus the Reynolds number of the grid is R = Muo/p and

x-*. v-t. t-
1^

M' y~ M' l~ M'
u' v' co'M

u = —, v=—, OJ = .
uQ u0 u0
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So equation (2) becomes
do) ,, , dco do) 1 [d2aj 32w\ .,.,.
dt dx ay R\dxz dy2}

for steady motion r-r -i2^- + ̂ -r-i? M r + » r = 0. (3)
dx2 ox ay2 \ ox oyj

The continuity equation

and the definition of

represent with equation (3) the whole set of equations to be solved.
If the change of velocity were very small compared with the average velocity, we

could neglect the two quadratic terms. To avoid this we try to find a solution for which
these two quadratic terms vanish. Another type of flow for which the 'inertia terms'
are cancelled is given by G. I. Taylor (5).

Let us introduce a stream function i/r, such that

du
dx'

0) =

dv
dy

dv
dx~

du
'By'

»=!•

* , (4»

(4c)
Let the stream function be of the simplest form

xjr = f(x) sin 2ny. (5)

The quadratic terms of equation (3) vanish when

dw dco ._.
u^-+v^- = 0. 6)

ox oy
Substituting (5) into (6), we have

/'/"-//"'= 0, ( 6 a )

and if any of the derivatives are not identically zero,
fin f

T'T
Integrating (66), we obtain / " = k2f, (6c)

where k is an arbitrary constant (real or complex).

Integrating (6c), we have f(x) — Aekx (6d)

and ijr — Aekx sin 2ny. (6e)
Hence the quadratic terms vanish if/ is chosen to be an exponential function of x.

The sum of such functions does not fulfil equation (6).
When the condition (6) is fulfilled equation (3) becomes linear,

2 B!! + 0> (7)
3a;2 dx dy2

and substituting a> = g(x) sin 2ny, (8)
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we obtain g" - Eg' - 47r2gr = 0. (9)

Solving (9), we have g = c1e
xix + c2e**e, (9a)

where Ax>a = | ± I{— + 4TT«). (96)

The vorticity from (8) and (9a) is thus

o) = (c^i* + c2e
x*x) sin27ry; (9 c)

also from (6e) (o = A{±n'i-k'SL)ekx8ai2ny. {9d)

Comparing (9c) with (9d) we see that two solutions are possible, namely
(i) k = A]_, cx = — i?A1J4, c2 = 0,

(ii) A; = A2, cx = 0, c2 = -J?A2^.

If the Reynolds number is high enough, we may approximate to the root terms in
the expression for X1 and A2 (96). Then simply

X1 = R, (10a)
477-2

A2 = - - J . (106)
Fig. 1 shows the exact variation of Aa and A2 with the Reynolds number. The

asymptotic values for Ax and A2 are shown with dotted lines in the diagram. When
R > 30, the simpler formulae may be used. If the Reynolds number is very small
(R < 1) the absolute values of X1 and A2 tend to 2n.

The stream function of the average flow is \[rQ = y, so the total stream function is

iro + xlr = V + AeXx sin 2ny.

The constant A may be determined by fixing the stagnation point of the flow. If
we choose the stagnation point (u + u0 = 0, v = 0) at x = 0, we get A = — 1/2TT.

Hence we have all the functions needed to described the flow:

^ V —^re**su\2ny, (11a)

= l-eAa:cos27n/J (116)

v = — — eXx8ia2ny, (lie)

o) =•AReAxsin2ny.

The streamUnes of the two types of flow are shown in Figs. 2 and 3. Fig. 2 corre-
sponds to A2 and represents a flow past the grid (R = 40). A pair of bound eddies occur
behind the single elements of the grid. The streamUnes become parallel and equi-
distant at infinity downstream as shown by the short Unes on the right side of the
figure. The dotted streamUnes correspond to the half-value of stream function between
two full Unes.

When the Reynolds number increases, the whole flow pattern is extended uniformly
in the direction of main flow.

Fig. 3 shows the other solution using Ax (R = 40). The rate of change of the flow is
here very great. The picture may represent a flow of alternating vortices superposed
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on a main flow perpendicular to their plane. With increasing Reynolds number the
scale in the direction of main flow contracts.
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CONCLUSION
A simple exact solution of the Navier-Stokes equations, which may describe the motion
behind a grid, consisting of equally spaced parallel rods or strips, has been found.

The solution does not give information in the plane of the grid, but seems to describe,
the flow quite closely behind it. The solution gives a representation of the pairs of
bound eddies and gives the law of decay for the individual wakes of the elements of
the grid for any Reynolds number.

The problem was suggested by Prof. Sir Geoffrey Taylor to whom I am greatly
indebted for his advice and criticism. Thanks are due to the British Council for granting
me a research scholarship.
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