
NMMO 401 Continuum mechanics Winter 2016/2017 Deadline 5th January 2017

1. Consider a hollow cylinder of initial inner radius Rin and outer radius Rout, see Figure 1, and assume that the cylinder
is in this configuration in a stress free state. Further, assume that the material of which is the cylinder made is a
homogeneous isotropic incompressible elastic material specified by constitutive relation

T = −pI + µ (B− I) ,

where µ is a positive constant and B denotes the left Cauchy–Green tensor with respect to the initial configuration with
the inner radius Rin and the outer radius Rout.
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Figure 1: Inflation of a hollow cylinder made of an incompressible elastic material.

Let us now apply a pressure Pin inside the cylinder and a pressure Pout outside the cylinder. If the inner pressure is
higher than the outer pressure, then the cylinder inflates. The task is to find a relation between the relative change in
the void area
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and the pressure difference Pin − Pout.

Find the answer using linearised elasticity theory, that is use the governing equations in the form

div � = 0,

Tr (∇U) = 0,

where � =def −pI + 2µ� and � =def
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. The boundary conditions read
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while the deformation is assumed to take the form

r = f(R),

ϕ = Φ,

z = Z.

The result should be identical to the result

Pout − Pin ≈ µ
∫ Rout
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that we have already obtained via linearisation of the solution to the complete system of nonlinear governing equations.
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The formula for the divergence of a tensorial quantity A in the cylindrical coordinate system reads

divA =
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