NMMO 401 Continuum mechanics

1. Let \mathbb{A} be a sufficiently smooth tensor field in \mathbb{R}^3 , and let $v \in \mathbb{R}^3$ be an arbitrary, but fixed vector field. Then the tensor rot \mathbb{A} that satisfies

$$(\operatorname{rot} \mathbb{A})^{\top} \boldsymbol{v} = \operatorname{rot} \left(\mathbb{A}^{\top} \boldsymbol{v} \right)$$
(1)

for all v is called the curl of the tensor field \mathbb{A} . If we want to work with components of rot \mathbb{A} , then it is easy to see that (1) implies in Cartesian coordinate system

$$[\operatorname{rot} \mathbb{A}]_{ij} = \epsilon_{jkl} \frac{\partial \mathcal{A}_{il}}{\partial x_k}.$$
(2)

Show that the following identities hold

$$\operatorname{rot} (\nabla \boldsymbol{u}) = \boldsymbol{0},$$
$$\operatorname{div} (\operatorname{rot} \mathbb{A}) = \boldsymbol{0}$$

for any smooth vector field \boldsymbol{u} and tensor field $\mathbb{A}.$

2. Let us now try to answer the following question. What is the condition that guarantees that a given tensor field ε is generated as a symmetric part of a gradient of a vector field? In other words, we want to know whether the given tensor field ε can be written as

$$\varepsilon = \frac{1}{2} \left(\nabla \boldsymbol{U} + \left(\nabla \boldsymbol{U} \right)^{\top} \right),$$

where \boldsymbol{U} is a vector field.

Recall that we are already able to answer the question whether a given tensor field \mathbb{F} is generated as a gradient of some vector function. If the domain is simply connected, the necessary and sufficient condition reads

$$\operatorname{rot}\mathbb{F}=\mathbb{O}.$$

Show that in the present case, the necessary and sufficient condition for ε being generated as a symmetric part of the gradient of a vector field reads

$$\operatorname{rot}\left(\left(\operatorname{rot} \mathfrak{c}\right)^{\top}\right) = \mathbb{0}.$$
(3)

(We again assume that the domain of interest is simply connected.) You can proceed as follows.

• (Necessary condition) Assume that there exists a vector field U such that $\nabla U = \varepsilon + \omega$, where ε is the symmetric part of the gradient and ω is the skew symmetric part of the gradient. Show that in such a case we have

$$\operatorname{rot} \mathfrak{e} = \frac{1}{2} \left(\nabla \left(\operatorname{rot} \boldsymbol{U} \right) \right)^{\top}$$

The necessary condition (3) then follows from the necessary condition for the existence of a potential for the tensor field $(\operatorname{rot} \varepsilon)^{\top}$.

• (Sufficient condition) Fulfillment of (3) and the fact that the domain is simply connected implies that there exists a vector field \boldsymbol{a} such that $(\operatorname{rot} \mathfrak{e})^{\top} = \nabla \boldsymbol{a}$. Let $\mathbb{A}_{\boldsymbol{a}}$ denotes the skew-symmetric matrix associated to vector \boldsymbol{a} . (Identity $\mathbb{A}_{\boldsymbol{a}}\boldsymbol{w} = \boldsymbol{a} \times \boldsymbol{w}$ holds for any \boldsymbol{w} .) Show that

$$\operatorname{rot} \mathbb{A}_{\boldsymbol{a}} = (\operatorname{div} \boldsymbol{a}) \mathbb{I} - (\nabla \boldsymbol{a})^{\top}$$
(4a)

and that

 $\operatorname{div} \boldsymbol{a} = 0. \tag{4b}$

Now construct the tensor field ${\mathfrak g}$ as

 $g =_{\operatorname{def}} \mathfrak{c} + \mathbb{A}_{\boldsymbol{a}},$

and show that this tensor field has a potential, that is there exists a vector field \boldsymbol{U} such that $\nabla \boldsymbol{U} = \boldsymbol{\varepsilon} + \mathbb{A}_{\boldsymbol{a}}$. Since $\mathbb{A}_{\boldsymbol{a}}$ is a skew-symmetric matrix, we see that equality $\nabla \boldsymbol{U} = \boldsymbol{\varepsilon} + \mathbb{A}_{\boldsymbol{a}}$ implies $\boldsymbol{\varepsilon} = \frac{1}{2} \left(\nabla \boldsymbol{U} + \nabla \boldsymbol{U}^{\top} \right)$ which completes the proof. (You may find formulae (4) useful in the course of the proof.)

• (Kernel; **optional question**) Given a tensor field ε that satisfies the compatibility condition rot $((rot \varepsilon)^{\top}) = 0$ in

a simply connected domain, is it possible to *uniquely* determine \boldsymbol{U} such that $\boldsymbol{\varepsilon} = \frac{1}{2} \left(\nabla \boldsymbol{U} + (\nabla \boldsymbol{U})^{\top} \right)$? If not, is it possible to fully characterize the arising ambiguity in the specification of \boldsymbol{U} ? (In other words, is it possible to say that two different \boldsymbol{U} generating the same $\boldsymbol{\varepsilon}$ differ at most by a certain class of motions?)