1. Consider the deformation $\boldsymbol{x}=\boldsymbol{\chi}(\boldsymbol{X}, t)$ given by the following formulae

$$
\begin{aligned}
& \mathrm{x}_{1}=\lambda(t) \mathrm{X}_{1} \\
& \mathrm{x}_{2}=[\lambda(t)]^{-\frac{1}{2}} \mathrm{X}_{2}, \\
& \mathrm{x}_{3}=[\lambda(t)]^{-\frac{1}{2}} \mathrm{X}_{3},
\end{aligned}
$$

where $\lambda(t)$ is a positive function of time, $\lambda\left(t_{0}\right)=1$. Find the explicit formulae for the Lagrangian velocity field \boldsymbol{V}, Eulerian velocity field \boldsymbol{v}, deformation gradient \mathbb{F}, stretch tensor \mathbb{U} and rotation tensor \mathbb{R} from the polar decomposition of \mathbb{F}, velocity gradient \mathbb{L}, symmetric part of the velocity gradient \mathbb{D}, left Cauchy-Green tensor \mathbb{B}, right Cauchy-Green tensor \mathbb{C} and Green-Saint-Venant strain \mathbb{E}.
Is the deformation isochoric? (Isochoric $=$ preserves volume.)

