1. Consider the deformation $\boldsymbol{x} = \boldsymbol{\chi}(\boldsymbol{X},t)$ given by the following formulae

$$\begin{split} \mathbf{x}_1 &= \lambda(t) \mathbf{X}_1, \\ \mathbf{x}_2 &= [\lambda(t)]^{-\frac{1}{2}} \, \mathbf{X}_2, \\ \mathbf{x}_3 &= [\lambda(t)]^{-\frac{1}{2}} \, \mathbf{X}_3, \end{split}$$

where $\lambda(t)$ is a positive function of time, $\lambda(t_0) = 1$. Find the explicit formulae for the Lagrangian velocity field \mathbf{V} , Eulerian velocity field \mathbf{v} , deformation gradient \mathbb{F} , stretch tensor \mathbb{U} and rotation tensor \mathbb{R} from the polar decomposition of \mathbb{F} , velocity gradient \mathbb{L} , symmetric part of the velocity gradient \mathbb{D} , left Cauchy–Green tensor \mathbb{B} , right Cauchy–Green tensor \mathbb{C} and Green–Saint-Venant strain \mathbb{E} .

Is the deformation isochoric? (Isochoric = preserves volume.)