1. Consider the deformation χ given by the following formulae

$$
\begin{aligned}
r & =f(R), \\
\varphi & =\Phi, \\
z & =Z .
\end{aligned}
$$

This means that the deformation χ is given as a function that takes a point with the coordinates $[R, \Phi, Z]$ in the reference configuration-with respect to the cylindrical coordinate system-and returns the position of that point in terms of polar coordinates in the current configuration, see Figure 1.
Show that the deformation gradient \mathbb{F} is given by the formula

$$
\mathbb{F}=\frac{\mathrm{d} f}{\mathrm{~d} R} \boldsymbol{e}_{\hat{r}} \otimes \boldsymbol{E}_{\hat{R}}+\frac{f}{R} \boldsymbol{e}_{\hat{\varphi}} \otimes \boldsymbol{E}_{\hat{\Phi}}+\boldsymbol{e}_{\hat{z}} \otimes \boldsymbol{E}_{\hat{Z}}
$$

that is

$$
\mathbb{F}=\left[\begin{array}{ccc}
\frac{\mathrm{d} f}{\mathrm{~d} R} & 0 & 0 \\
0 & \frac{f}{R} & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

In other words, show that if we have a vector $\boldsymbol{V}=\mathrm{V}^{\hat{R}} \boldsymbol{E}_{\hat{R}}+\mathrm{V}^{\hat{\Phi}} \boldsymbol{E}_{\hat{\Phi}}+\mathrm{V}^{\hat{Z}} \boldsymbol{E}_{\hat{Z}}$ in the reference configuration and a corresponding vector $\boldsymbol{c}=\mathrm{v}^{\hat{r}} \boldsymbol{e}_{\hat{r}}+\mathrm{v}^{\hat{\varphi}} \boldsymbol{e}_{\hat{\varphi}}+\mathrm{v}^{\hat{z}} \boldsymbol{e}_{\hat{z}}$ in the current configuration, then the relation between the components of the vectors reads

$$
\left[\begin{array}{c}
\mathrm{v}_{\hat{r}} \\
\mathrm{v}^{\hat{\varphi}} \\
\mathrm{v}^{\hat{z}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\mathrm{d} f}{\mathrm{~d} R} & 0 & 0 \\
0 & \frac{f}{R} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}^{\hat{R}} \\
\mathrm{~V}^{\hat{\Phi}} \\
\mathrm{V}^{\hat{Z}}
\end{array}\right] .
$$

(Recall that by the vector we mean an infinitesimal line segment placed at the given point, or, more precisely it is a tangent vector to the corresponding curve passing through the given point.)

Figure 1: Problem geometry.
2. Prove the following lemma. Let \boldsymbol{v} be a smooth vector field in $\Omega \subset \mathbb{R}^{3}$, and let $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with smooth boundary. Then there exist a scalar field φ and a vector field \boldsymbol{A} such that

$$
\boldsymbol{v}=-\nabla \varphi+\operatorname{rot} \boldsymbol{A} .
$$

Function φ is called the scalar potential and function \boldsymbol{A} is called the vector potential of the vector field \boldsymbol{v}.

Remark: The decomposition of \boldsymbol{v} is called the Helmholtz decomposition. If necessary, you can look up the proof in your favourite book on vector calculus.

