1. Prove the following lemma. Let $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with a smooth boundary, and \boldsymbol{v} is a smooth vector field that vanishes on the boundary $\left.\boldsymbol{v}\right|_{\partial \Omega}=0$. Then

$$
2 \int_{\Omega} \mathbb{D}: \mathbb{D} \mathrm{dV}=\int_{\Omega} \nabla \boldsymbol{v}: \nabla \boldsymbol{v} \mathrm{dV}+\int_{\Omega}(\operatorname{div} \boldsymbol{v})^{2} \mathrm{dV}
$$

where \mathbb{D} denotes the symmetric part of the gradient of $\boldsymbol{v}, \mathbb{D}={ }_{\operatorname{def}} \frac{1}{2}\left(\nabla \boldsymbol{v}+(\nabla \boldsymbol{v})^{\top}\right)$.

