1. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be a skew-symmetric matrix

$$
\mathrm{A}=\operatorname{def}\left[\begin{array}{ccc}
0 & \mathrm{~A}_{12} & \mathrm{~A}_{13} \\
-\mathrm{A}_{12} & 0 & \mathrm{~A}_{23} \\
-\mathrm{A}_{13} & -\mathrm{A}_{23} & 0
\end{array}\right]
$$

such that $\mathrm{A}_{12}^{2}+\mathrm{A}_{13}^{2}+\mathrm{A}_{23}^{2}=1$, and let $\varphi \in[0,2 \pi)$ be an arbitrary number. Show that

$$
\mathrm{e}^{\varphi \mathbb{A}}=\mathbb{\square}+(\sin \varphi) \mathbb{A}+(1-\cos \varphi) \mathbb{A}^{2} .
$$

(Cayley-Hamilton theorem might be useful.) Note the striking similarity of the result with our formula for the determination of the rotation matrix from the axis/angle data. This is not a coincidence. (Skew-symmetric matrices are infinitesimal generators of the group of rotations in $\mathbb{R}^{3}$.)
2. Show that

$$
\begin{aligned}
& \frac{\partial^{2} I_{1}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=0 \\
& \frac{\partial^{2} I_{2}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=(\operatorname{Tr} \mathbb{C})(\operatorname{Tr} \mathbb{B})-\operatorname{Tr}(\mathbb{C B}) \\
& \frac{\partial^{2} I_{3}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=(\operatorname{det} \mathbb{A})\left(\operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{B}\right) \operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{C}\right)-\operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{B} \mathbb{A}^{-1} \mathbb{C}\right)\right)
\end{aligned}
$$

where $I_{1}(\mathbb{A}), I_{2}(\mathbb{A})$ and $I_{3}(\mathbb{A})$ denote the principal invariants of matrix $\mathbb{A}$, that is

$$
\begin{aligned}
& \mathrm{I}_{1}(\mathbb{A})={ }_{\operatorname{def}} \operatorname{Tr} \mathbb{A} \\
& \mathrm{I}_{2}(\mathbb{A})={ }_{\operatorname{def}} \frac{1}{2}\left((\operatorname{Tr} \mathbb{A})^{2}-\operatorname{Tr}\left(\mathbb{A}^{2}\right)\right), \\
& \mathrm{I}_{3}(\mathbb{A})={ }_{\operatorname{def}} \operatorname{det} \mathbb{A} .
\end{aligned}
$$

Please note that $\frac{\partial f(A)}{\partial A}[B]$ is just another notation for Gâteaux derivative, that is

$$
\frac{\partial \mathfrak{f}(\mathbb{A})}{\partial \mathbb{A}}[\mathbb{B}]={ }_{\operatorname{def}} D_{\mathfrak{f}}(\mathbb{A})[\mathbb{B}]
$$

