1. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be an invertible matrix. Show that

$$
\mathrm{I}_{2}(\mathbb{A})=\operatorname{Tr}(\operatorname{cof} \mathbb{A})
$$

where $\operatorname{cof} \mathbb{A}=\operatorname{def}(\operatorname{det} \mathbb{A}) \mathbb{A}^{-T}$ denotes the cofactor matrix of matrix \mathbb{A}, and $\mathrm{I}_{2}(\mathbb{A})={ }_{\operatorname{def}} \frac{1}{2}\left((\operatorname{Tr} \mathbb{A})^{2}-\operatorname{Tr}\left(\mathbb{A}^{2}\right)\right)$ is the second invariant of matrix A.
2. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ a $\mathbb{B} \in \mathbb{R}^{3 \times 3}$ be invertible matrices. Show that

$$
\operatorname{det}(\mathbb{A}+\mathbb{B})=\operatorname{det} \mathbb{A}+\operatorname{Tr}\left(\mathbb{A}^{\top} \operatorname{cof} \mathbb{B}\right)+\operatorname{Tr}\left(\mathbb{B}^{\top} \operatorname{cof} \mathbb{A}\right)+\operatorname{det} \mathbb{B},
$$

where $\operatorname{cof} \mathbb{C}=_{\operatorname{def}}(\operatorname{det} \mathbb{C}) \mathbb{C}^{-\mathbb{T}}$ denotes the cofactor matrix of matrix \mathbb{C}.
3. Let us assume that the curve γ in \mathbb{R}^{2} is given in terms of polar coordinates $[r, \varphi$], see Figure 1 , which means that

$$
\gamma: s \in(a, b) \mapsto\left[\begin{array}{l}
r(s) \cos \varphi(s) \\
r(s) \sin \varphi(s)
\end{array}\right],
$$

where s is the parametrisation of the curve. Further let us assume that $f: \boldsymbol{x}=[x, y] \in \mathbb{R}^{2} \mapsto f(\boldsymbol{x}) \in \mathbb{R}$ is a given function. Show that

$$
\int_{\gamma} f(\boldsymbol{x}) \mathrm{d} l=\int_{s=a}^{b} f(r(s) \cos \varphi(s), r(s) \sin \varphi(s)) \sqrt{\left(\frac{\mathrm{d} r}{\mathrm{~d} s}\right)^{2}+r^{2}\left(\frac{\mathrm{~d} \varphi}{\mathrm{~d} s}\right)^{2}} \mathrm{~d} s
$$

Figure 1: Line integral in \mathbb{R}^{2} - parametrisation in polar coordinates.

