Let \mathbb{A} be a sufficiently smooth tensor field in \mathbb{R}^{3}, and let $\boldsymbol{v} \in \mathbb{R}^{3}$ be an arbitrary, but fixed vector field. Then the tensor rot A that satisfies

$$
\begin{equation*}
(\operatorname{rot} \mathbb{A})^{\top} \boldsymbol{v}=\operatorname{rot}\left(\mathbb{A}^{\top} \boldsymbol{v}\right) \tag{1}
\end{equation*}
$$

for all \boldsymbol{v} is called the curl of the tensor field \mathbb{A}. If we want to work with components of rot \mathbb{A}, then it is easy to see that (1) implies in Cartesian coordinate system

$$
\begin{equation*}
\left[\operatorname{rot} \mathbb{A}_{i j}=\epsilon_{j}^{k l} \frac{\partial \mathrm{~A}_{i l}}{\partial x_{k}} .\right. \tag{2}
\end{equation*}
$$

1. Show that the following identities hold

$$
\begin{array}{r}
\operatorname{rot}(\nabla \boldsymbol{u})=\mathbb{0} \\
\operatorname{div}(\operatorname{rot} \mathbb{A})=\mathbf{0}
\end{array}
$$

for any smooth vector field \boldsymbol{u} and tensor field \mathbb{A}.
Let us now try to answer the following question. What is the condition that guarantees that a given tensor field \mathbb{C} is generated as a symmetric part of a gradient of a vector field? That is whether there exists a vector field \boldsymbol{U} such that

$$
\mathbb{C}=\frac{1}{2}\left(\nabla \boldsymbol{U}+(\nabla \boldsymbol{U})^{\top}\right) .
$$

Recall that we are already able to answer the question whether a given tensor field \mathbb{F} is generated as a gradient of some vector function. If the domain is simply connected, the necessary and sufficient condition reads

$$
\operatorname{rot} \mathbb{F}=\mathbb{0}
$$

Show that in the present case, the necessary and sufficient condition for \mathbb{C} being generated as a symmetric part of the gradient of a vector field reads

$$
\begin{equation*}
\operatorname{rot}\left((\operatorname{rot} \mathbb{C})^{\top}\right)=0 \tag{3}
\end{equation*}
$$

(We again assume that the domain of interest is simply connected.) You can proceed as follows.

1. (Necessary condition) Assume that there exists a vector field \boldsymbol{U} such that $\nabla \boldsymbol{U}=\mathbb{C}+\omega$, where \Subset is the symmetric part of the gradient and ω is the skew symmetric part of the gradient. Show that in such a case we have

$$
\operatorname{rot} \mathbb{C}=\frac{1}{2}(\nabla(\operatorname{rot} \boldsymbol{U}))^{\top} .
$$

and condition (3) follows immediately.
2. (Sufficient condition) Fulfillment of (3) and the fact that the domain is simply connected implies that there exists a vector field \boldsymbol{a} such that $(\operatorname{rot} \mathbb{C})^{\top}=\nabla \boldsymbol{a}$. Let $\mathbb{A}_{\boldsymbol{a}}$ denotes the skew-symmetric matrix associated to vector \boldsymbol{a}. (Identity $\mathbb{A}_{a} \boldsymbol{w}=\boldsymbol{a} \times \boldsymbol{w}$ holds for any \boldsymbol{w}.) Show that

$$
\begin{equation*}
\operatorname{rot} \mathbb{A}_{\boldsymbol{a}}=(\operatorname{div} \boldsymbol{a}) \mathbb{\square}-(\nabla \boldsymbol{a})^{\top} \tag{4a}
\end{equation*}
$$

and that

$$
\begin{equation*}
\operatorname{div} \boldsymbol{a}=0 \tag{4b}
\end{equation*}
$$

Now construct the tensor field g as

$$
\mathfrak{g}=\operatorname{def}^{\mathbb{C}}+\mathbb{A}_{\boldsymbol{a}}
$$

and show that this tensor field has a potential, that is there exists a vector field \boldsymbol{U} such that $\nabla \boldsymbol{U}=\mathbb{C}+\mathbb{A}_{\boldsymbol{a}}$ which completes the proof. (You may find formulae (4) useful in the course of the proof.)
3. (You do not need to answer this question.) Given a tensor field \mathbb{C} that satisfies the compatibility condition $\operatorname{rot}\left((\operatorname{rot} \mathbb{C})^{\top}\right)=\mathbb{0}$ in a simply connected domain, is it possible to uniquely determine \boldsymbol{U} such that $\mathbb{C}=\frac{1}{2}\left(\nabla \boldsymbol{U}+(\nabla \boldsymbol{U})^{\top}\right)$? If not, is it possible to fully characterize the arising ambiguity in the specification of \boldsymbol{U} ? (In other words, is it possible to say that two different \boldsymbol{U} generating the same \mathbb{C} differ at most by a certain class of motions?)

