1. Consider χ given by the following formulae

$$
\begin{aligned}
r & =f(R), \\
\varphi & =\Phi, \\
z & =Z .
\end{aligned}
$$

This means that the deformation χ is given as a function that takes coordinates $[R, \Phi, Z]$ in the reference configurationwith respect to the cylindrical coordinate system - and returns position of that point in terms or polar coordinates in the current configuration, see Figure 1.
Show that the deformation gradient is given by the formula

$$
\mathbb{F}=\frac{\mathrm{d} f}{\mathrm{~d} R} \mathbf{e}_{\hat{r}} \otimes \mathbf{E}_{\hat{R}}+\frac{f}{R} \mathbf{e}_{\hat{\varphi}} \otimes \mathbf{E}_{\hat{\Phi}}+\mathbf{e}_{\hat{z}} \otimes \mathbf{E}_{\hat{Z}}
$$

that is

$$
\mathbb{F}=\left[\begin{array}{ccc}
\frac{\mathrm{d} f}{\mathrm{~d} R} & 0 & 0 \\
0 & \frac{f}{R} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Figure 1: Problem geometry.
2. Recall that the Euler-Almansi strain tensor is defined as $\left.\mathbb{e}(\mathbf{x}, t)\right|_{\mathbf{x}=\boldsymbol{\chi}(\mathbf{X}, t)}={ }_{\operatorname{def}} \frac{1}{2}\left(\mathbb{0}-\mathbb{F}^{-\top}(\mathbf{X}, t) \mathbb{F}^{-1}(\mathbf{X}, t)\right)$. Show that the material time derivative of Euler-Almansi strain tensor is given by the formula

$$
\frac{\mathrm{de}}{\mathrm{~d} t}=\mathbb{D}-\mathbb{L}^{\top} \mathbb{e}-\mathbb{e} \mathbb{L} .
$$

