NMMO 401 Continuum mechanics

Winter 2015/2016

- 1. Let **u** be an Eulerian vector field. Is it true that $\frac{d}{dt} (\operatorname{div} \mathbf{v}) = \operatorname{div} \left(\frac{d\mathbf{v}}{dt}\right)$, where $\frac{d}{dt}$ denotes the material time derivative? If not, what is the difference between the two expressions?
- 2. Consider the deformation shown in Figure 1. Assume that the deformation is described using the cylindrical coordinate system in the current configuration, that is function $\chi(\mathbf{X}, t)$ is given by the formulae

$$r = f(X, Y),$$

$$\varphi = g(X, Y),$$

$$z = Z,$$

while the relation between the Cartesian coordinates in the current configuration [x, y, z] and the cylindrical coordinates $[r, \varphi, z]$ in the current configuration reads

$$\begin{split} &x=r\cos\varphi,\\ &y=r\sin\varphi,\\ &z=z. \end{split}$$

Find a formula for the deformation gradient \mathbb{F} provided that we want to use Cartesian coordinate system in the reference configuration and the cylindrical coordinate system in the current configuration.

Figure 1: Problem geometry.