1. Prove the following lemma. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with a smooth boundary. Let \mathbf{v} be a smooth vector field that vanishes on the boundary $\left.\mathbf{v}\right|_{\partial \Omega}=0$. Then

$$
2 \int_{\Omega} \mathbb{D}: \mathbb{D} \mathrm{dV}=\int_{\Omega} \nabla \mathbf{v}: \nabla \mathbf{v} \mathrm{dV}+\int_{\Omega}(\operatorname{div} \mathbf{v})^{2} \mathrm{dV}
$$

where \mathbb{D} denotes the symmetric part of the gradient of $\mathbf{v}, \mathbb{D}={ }_{\operatorname{def}} \frac{1}{2}\left(\nabla \mathbf{v}+(\nabla \mathbf{v})^{\top}\right)$.
2. Prove the following lemma. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with a smooth boundary, and let \mathbf{v} be a smooth vector field, then

$$
\int_{\Omega} \operatorname{rot} \mathbf{v} \mathrm{dV}=-\int_{\partial \Omega} \mathbf{v} \times \mathbf{n} \mathrm{dS} .
$$

3. Show that if $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with a sufficiently smooth boundary, then

$$
\int_{\partial \Omega} \mathrm{d} \mathbf{S}=\mathbf{0}
$$

