NMMO 401 Continuum mechanics

Winter 2015/2016

1. Let $\mathbf{v} =_{\text{def}} \frac{\mathbf{r}}{|\mathbf{r}|^n}$, $n \in \mathbb{N}$, be a vector field in $\mathbb{R}^3 \setminus \{\mathbf{0}\}$, where $\mathbf{r} =_{\text{def}} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\mathsf{T}}$ denotes the position vector and $|\cdot|$ denotes the standard Euclidean norm. Find by direct computation rot \mathbf{v} , $\Delta \mathbf{v}$ and $\nabla (\text{div } \mathbf{v})$, and verify that

$$\operatorname{rot}\operatorname{rot}\mathbf{v} = \nabla\operatorname{div}\mathbf{v} - \Delta\mathbf{v}.$$

Recall that $\Delta \mathbf{v} =_{def} \operatorname{div} (\nabla \mathbf{v})$. It might be convenient to first find formulae for div \mathbf{r} , $\nabla |\mathbf{r}|$ and so on, and then to proceed using the identities of the type div $(\varphi \mathbf{u}) = \mathbf{u} \cdot \nabla \varphi + \varphi \operatorname{div} \mathbf{u}$ and so on. (See the list presented during the last tutorial.)

2. Show that

$$\begin{split} &\frac{\partial^2 I_1(\mathbb{A})}{\partial \mathbb{A}^2} [\mathbb{B}, \mathbb{C}] = 0, \\ &\frac{\partial^2 I_2(\mathbb{A})}{\partial \mathbb{A}^2} [\mathbb{B}, \mathbb{C}] = (\operatorname{Tr} \mathbb{C}) \left(\operatorname{Tr} \mathbb{B} \right) + \operatorname{Tr} \left(\mathbb{C} \mathbb{B} \right), \\ &\frac{\partial^2 I_3(\mathbb{A})}{\partial \mathbb{A}^2} [\mathbb{B}, \mathbb{C}] = (\det \mathbb{A}) \left(\operatorname{Tr} \left(\mathbb{A}^{-1} \mathbb{B} \right) \operatorname{Tr} \left(\mathbb{A}^{-1} \mathbb{C} \right) - \operatorname{Tr} \left(\mathbb{A}^{-1} \mathbb{B} \mathbb{A}^{-1} \mathbb{C} \right) \right), \end{split}$$

where $I_1(\mathbb{A})$, $I_2(\mathbb{A})$ and $I_3(\mathbb{A})$ denote the principal invariants of matrix \mathbb{A} , that is

$$\begin{split} &I_1(\mathbb{A}) =_{def} \operatorname{Tr} \mathbb{A}, \\ &I_2(\mathbb{A}) =_{def} \frac{1}{2} \left(\left(\operatorname{Tr} \mathbb{A} \right)^2 - \operatorname{Tr} \left(\mathbb{A}^2 \right) \right), \\ &I_3(\mathbb{A}) =_{def} \det \mathbb{A}. \end{split}$$