1. Let $\mathbf{v}=\operatorname{def} \frac{\mathbf{r}}{|\mathbf{r}|^{n}}, n \in \mathbb{N}$, be a vector field in $\mathbb{R}^{3} \backslash\{\mathbf{0}\}$, where $\mathbf{r}=_{\text {def }}\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{\top}$ denotes the position vector and $|\cdot|$ denotes the standard Euclidean norm. Find by direct computation $\operatorname{rot} \operatorname{rot} \mathbf{v}, \Delta \mathbf{v}$ and $\nabla(\operatorname{div} \mathbf{v})$, and verify that

$$
\operatorname{rot} \operatorname{rot} \mathbf{v}=\nabla \operatorname{div} \mathbf{v}-\Delta \mathbf{v}
$$

Recall that $\Delta \mathbf{v}={ }_{\operatorname{def}} \operatorname{div}(\nabla \mathbf{v})$. It might be convenient to first find formulae for $\operatorname{div} \mathbf{r}, \nabla|\mathbf{r}|$ and so on, and then to proceed using the identities of the type $\operatorname{div}(\varphi \mathbf{u})=\mathbf{u} \bullet \nabla \varphi+\varphi \operatorname{div} \mathbf{u}$ and so on. (See the list presented during the last tutorial.)
2. Show that

$$
\begin{aligned}
& \frac{\partial^{2} \mathrm{I}_{1}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=0 \\
& \frac{\partial^{2} \mathrm{I}_{2}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=(\operatorname{Tr} \mathbb{C})(\operatorname{Tr} \mathbb{B})+\operatorname{Tr}(\mathbb{C} \mathbb{B}), \\
& \frac{\partial^{2} \mathrm{I}_{3}(\mathbb{A})}{\partial \mathbb{A}^{2}}[\mathbb{B}, \mathbb{C}]=(\operatorname{det} \mathbb{A})\left(\operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{B}\right) \operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{C}\right)-\operatorname{Tr}\left(\mathbb{A}^{-1} \mathbb{B} \mathbb{A}^{-1} \mathbb{C}\right)\right),
\end{aligned}
$$

where $I_{1}(\mathbb{A}), I_{2}(\mathbb{A})$ and $I_{3}(\mathbb{A})$ denote the principal invariants of matrix \mathbb{A}, that is

$$
\begin{aligned}
& \mathrm{I}_{1}(\mathbb{A})=\operatorname{def} \operatorname{Tr} \mathbb{A} \\
& \mathrm{I}_{2}(\mathbb{A})=\operatorname{def} \frac{1}{2}\left((\operatorname{Tr} \mathbb{A})^{2}-\operatorname{Tr}\left(\mathbb{A}^{2}\right)\right), \\
& \mathrm{I}_{3}(\mathbb{A})=\operatorname{def} \operatorname{det} \mathbb{A} .
\end{aligned}
$$

