NMMO 401 Continuum mechanics

Winter 2015/2016

1. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be a skew-symmetric matrix

$$\mathbb{A} =_{\text{def}} \begin{bmatrix} 0 & A_{12} & A_{13} \\ -A_{12} & 0 & A_{23} \\ -A_{13} & -A_{23} & 0 \end{bmatrix},$$

such that $A_{12}^2 + A_{13}^2 + A_{23}^2 = 1$, and let $\varphi \in [0, 2\pi)$ be an arbitrary number. Show that

$$e^{\varphi \mathbb{A}} = \mathbb{I} + (\sin \varphi) \mathbb{A} + (1 - \cos \varphi) \mathbb{A}^2$$

(Cayley–Hamilton theorem might be useful.)

2. Let $\mathbb{A}\in\mathbb{R}^{3\times3}$ a $\mathbb{B}\in\mathbb{R}^{3\times3}$ be invertible matrices. Show that

$$\det(\mathbb{A} + \mathbb{B}) = \det \mathbb{A} + \operatorname{Tr}(\mathbb{A}^{\top} \operatorname{cof} \mathbb{B}) + \operatorname{Tr}(\mathbb{B}^{\top} \operatorname{cof} \mathbb{A}) + \det \mathbb{B},$$

where $\operatorname{cof} \mathbb{C} =_{\operatorname{def}} (\operatorname{det} \mathbb{C}) \mathbb{C}^{-\top}$ denotes the cofactor matrix of matrix \mathbb{C} .

3. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be an invertible matrix and let **u** and **v** be arbitrary fixed vectors in \mathbb{R}^3 such that $\mathbf{v} \bullet \mathbb{A}^{-1}\mathbf{u} \neq -1$. Show that

$$(\mathbb{A} + \mathbf{u} \otimes \mathbf{v})^{-1} = \mathbb{A}^{-1} - \frac{1}{1 + \mathbf{v} \bullet \mathbb{A}^{-1}\mathbf{u}} (\mathbb{A}^{-1}\mathbf{u}) \otimes (\mathbb{A}^{-\top}\mathbf{v}).$$

4. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix and let $\mathbb{B} \in \mathbb{R}^{3 \times 3}$ be a skew-symmetric matrix. Show that

 $\mathbb{A}:\mathbb{B}=0.$

(Recall that $\mathbb{A} : \mathbb{B} =_{\operatorname{def}} \operatorname{Tr}(\mathbb{AB}^{\mathsf{T}}).$)