1. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be a skew-symmetric matrix

$$
\mathbb{A}=\operatorname{def}\left[\begin{array}{ccc}
0 & \mathrm{~A}_{12} & \mathrm{~A}_{13} \\
-\mathrm{A}_{12} & 0 & \mathrm{~A}_{23} \\
-\mathrm{A}_{13} & -\mathrm{A}_{23} & 0
\end{array}\right]
$$

such that $A_{12}^{2}+A_{13}^{2}+A_{23}^{2}=1$, and let $\varphi \in[0,2 \pi)$ be an arbitrary number. Show that

$$
\mathrm{e}^{\varphi \mathbb{A}}=\mathbb{\square}+(\sin \varphi) \mathbb{A}+(1-\cos \varphi) \mathbb{A}^{2} .
$$

(Cayley-Hamilton theorem might be useful.)
2. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ a $\mathbb{B} \in \mathbb{R}^{3 \times 3}$ be invertible matrices. Show that

$$
\operatorname{det}(\mathbb{A}+\mathbb{B})=\operatorname{det} \mathbb{A}+\operatorname{Tr}\left(\mathbb{A}^{\top} \operatorname{cof} \mathbb{B}\right)+\operatorname{Tr}\left(\mathbb{B}^{\top} \operatorname{cof} \mathbb{A}\right)+\operatorname{det} \mathbb{B}
$$

where $\operatorname{cof} \mathbb{C}=_{\text {def }}(\operatorname{det} \mathbb{C}) \mathbb{C}^{-\top}$ denotes the cofactor matrix of matrix \mathbb{C}.
3. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be an invertible matrix and let \mathbf{u} and \mathbf{v} be arbitrary fixed vectors in \mathbb{R}^{3} such that $\mathbf{v} \bullet \mathbb{A}^{-1} \mathbf{u} \neq-1$. Show that

$$
(\mathbb{A}+\mathbf{u} \otimes \mathbf{v})^{-1}=\mathbb{A}^{-1}-\frac{1}{1+\mathbf{v} \bullet \mathbb{A}^{-1} \mathbf{u}}\left(\mathbb{A}^{-1} \mathbf{u}\right) \otimes\left(\mathbb{A}^{-\top} \mathbf{v}\right)
$$

4. Let $\mathbb{A} \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix and let $\mathbb{B} \in \mathbb{R}^{3 \times 3}$ be a skew-symmetric matrix. Show that

$$
\mathbb{A}: \mathbb{B}=0
$$

(Recall that $\mathbb{A}: \mathbb{B}={ }_{\mathrm{def}} \operatorname{Tr}\left(\mathbb{A}^{\top}\right)$.)

