1. Find the surface integral

$$
\begin{equation*}
I=\int_{S} \mathbf{v} \bullet \mathrm{~d} \mathbf{s} \tag{1}
\end{equation*}
$$

where the vector field $\mathbf{v}(x, y, z)$ is given by the formula

$$
\mathbf{v}=\left[\begin{array}{l}
x^{2} \tag{2}\\
y^{2} \\
z^{2}
\end{array}\right]
$$

and the surface S is the boundary of the volume $V=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq z^{2}, z \in[0, h]\right\}$. (The orientation of the surface is in the direction of the outward normal to the volume V.) After finishing the calculations find by direct computation the volume integral

$$
\begin{equation*}
J=\int_{V} \operatorname{div} \mathbf{v} \mathrm{dv} \tag{3}
\end{equation*}
$$

Verify, that $I=J$.

