CLASSICAL PROBLEMS IN CONTINUUM MECHANICS

VÍT PRŮŠA

Problem 1. Consider the following system of ordinary differential equations, $t \geq 0$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\mathrm{Re}} & 1 \\
0 & -\frac{1}{\mathrm{Re}}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+u\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] .
$$

Show that $\boldsymbol{u}=\mathbf{0}$ is a steady solution to the problem. Investigate linear stability of the steady solution. In particular, show that
(1) the eigenvalues of the linearized operator are negative,
(2) the disturbances decay for $t \rightarrow+\infty$,
(3) the disturbances can experience a strong transient growth,

Now consider the full problem. Show that
(1) there exist Reynolds number Re (small), such that any disturbance to the steady solution decays for $t \rightarrow+\infty$,
(2) there exist Reynolds number Re (high) and an initial condition $\boldsymbol{u}_{0}=\left[\begin{array}{l}u_{0} \\ v_{0}\end{array}\right]$, such that the disturbance to the steady solution starting form this initial condition does not decay for $t \rightarrow+\infty$. (You can solve the problem numerically.)

Problem 2. Consider differential equation

$$
\epsilon \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+(x+1) \frac{\mathrm{d} f}{\mathrm{~d} x}+f=2 x
$$

with boundary conditions

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=2
\end{aligned}
$$

Use the boundary layer technique and show that the exact solution can be, for small ϵ, approximated by

$$
f_{\text {approximation }}=\frac{x^{2}+3}{x+1}-2 \mathrm{e}^{-\frac{x}{\epsilon}} .
$$

Figure 1. Bipolar coordinates.

Problem 3. Consider bipolar coordinate system, see Figure 1. The relation between the Cartesian coordinates x, y and the bipolar coordinates α, β reads

$$
\begin{aligned}
& x=\frac{a \sinh \alpha}{\cosh \alpha-\cos \beta}, \\
& y=\frac{a \sin \beta}{\cosh \alpha-\cos \beta} .
\end{aligned}
$$

where $\beta \in[0,2 \pi], \alpha \in\left[\alpha_{1}, \alpha_{2}\right]$ and a is a parameter. Show that the coordinate curves, that is curves $\beta=$ const. and $\alpha=$ const. respectively, are given by implicit equations

$$
\begin{aligned}
& (x-a \operatorname{coth} \alpha)^{2}+y^{2}=\frac{a^{2}}{\sinh ^{2} \alpha}, \\
& x^{2}+(y-a \cot \beta)^{2}=\frac{a^{2}}{\sin ^{2} \beta} .
\end{aligned}
$$

Find tangent vectors to these curves, and denote them $\boldsymbol{e}_{\alpha} a \boldsymbol{e}_{\beta}$. Find the components of the metric tensor $g_{i j}$ and show that the Christoffel symbols $\Gamma^{\alpha}{ }_{\alpha \alpha} a \Gamma^{\beta}{ }_{\beta \beta}$ are given by the following formulae,

$$
\begin{aligned}
& \Gamma_{\alpha \alpha}^{\alpha}=-\frac{\sinh \alpha}{\cosh \alpha-\cos \beta}, \\
& \Gamma_{\beta \beta}^{\beta}=-\frac{\sin \beta}{\cosh \alpha-\cos \beta},
\end{aligned}
$$

and that the remaining Christoffel symbols are $\Gamma^{\beta}{ }_{\alpha \beta}=\Gamma^{\alpha}{ }_{\alpha \alpha}, \Gamma^{\alpha}{ }_{\beta \beta}=-\Gamma^{\alpha}{ }_{\alpha \alpha}, \Gamma^{\beta}{ }_{\alpha \alpha}=-\Gamma^{\beta}{ }_{\beta \beta}, \Gamma_{\alpha \beta}^{\alpha}=\Gamma^{\beta}{ }_{\beta \beta}$. Find a formula for $\Delta \phi$. (Laplace operator acting on a scalar function.)

Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, Praha 8 - Karlín, CZ 186 75, Czech Republic
E-mail address: prusv@karlin.mff.cuni.cz

