The physical and chemical structure of asphalt: with a brief history of their usage and availability

J. Murali Krishnan

Department of Civil Engineering
IIT Madras
jmk@iitm.ac.in

Sept. 25, 2006
Outline

1. What are Bitumen and Asphalt?

2. On the Abundance of Bitumen in Nature

3. Physical Chemistry of Asphalt
Outline

1. What are Bitumen and Asphalt?
2. On the Abundance of Bitumen in Nature
3. Physical Chemistry of Asphalt
Outline

1. What are Bitumen and Asphalt?
2. On the Abundance of Bitumen in Nature
3. Physical Chemistry of Asphalt
1. What are Bitumen and Asphalt?

2. On the Abundance of Bitumen in Nature

3. Physical Chemistry of Asphalt
Asphalt: A bituminous substance, found in many parts of the world, a smooth, hard, brittle, black or brownish-black resinous mineral, consisting of a mixture of different hydrocarbons; called also mineral pitch, Jew’s pitch and in the Old Testament ‘slime’

Oxford English Dictionary
Bitumen: Originally, a kind of mineral pitch found in Palestine and Babylon, used as mortar, etc. The same as asphalt, mineral pitch, Jew’s pitch, Bitumen Judaicum.

In modern scientific use, the generic name of certain inflammable substances, native hydrocarbons more or less oxygenated, liquid, semi-solid and solid, including naphtha, petroleum, asphalt, etc. Elastic Bitumen: Mineral Caoutchouc or Elaterite.

Oxford English Dictionary
What are Bitumen and Asphalt?

The Dictionary Definition

- **Bitumen**: Originally, a kind of mineral pitch found in Palestine and Babylon, used as mortar, etc. The same as asphalt, mineral pitch, Jew’s pitch, Bitumen Judaicum.

- In modern scientific use, the generic name of certain inflammable substances, native hydrocarbons more or less oxygenated, liquid, semi-solid and solid, including naphtha, petroleum, asphalt, etc. Elastic Bitumen: Mineral Caoutchouc or Elaterite.

Oxford English Dictionary
Bituminous materials: a class of black or dark-colored (solid, semi-solid or viscous) cementitious substances, natural or manufactured, composed principally of high molecular weight hydrocarbons, of which asphalts, tars, pitches, and asphaltites are typical.

ASTM D8-97-2000

Asphalt: A natural or artificial mixture of bitumen with mineral matter
Bitumen: The heaviest fraction of petroleum; it can be petroleum bitumen or natural bitumen

RILEM Technical Committees, 1992 (Organic Binders)
Bituminous materials: a class of black or dark-colored (solid, semi-solid or viscous) cementitious substances, natural or manufactured, composed principally of high molecular weight hydrocarbons, of which asphalts, tars, pitches, and asphaltites are typical.

ASTM D8-97-2000

Asphalt: A natural or artificial mixture of bitumen with mineral matter
Bitumen: The heaviest fraction of petroleum; it can be *petroleum bitumen* or *natural bitumen*

RILEM Technical Committees, 1992 (Organic Binders)
Highway Engineer Vs. Petroleum Chemist

- **Asphalt is a substance that causes particles of sand, gravel and crushed stone to stick together to form a pavement.**

 Highway Engineer

- *(Straight run)* Asphalt (with the exception of natural asphalt) is a residue of petroleum or a product of solvent extraction of petroleum. It is a complex mixture of thousands of different organic compounds mutually dissolved or dispersed.

 Petroleum Chemist
Highway Engineer Vs. Petroleum Chemist

- Asphalt is a substance that causes particles of sand, gravel and crushed stone to stick together to form a pavement.

 Highway Engineer

- (Straight run) Asphalt (with the exception of natural asphalt) is a residue of petroleum or a product of solvent extraction of petroleum. It is a complex mixture of thousands of different organic compounds mutually dissolved or dispersed.

 Petroleum Chemist
The word bitumen may, therefore, be strictly defined as a generic term that is used to designate a class of minerals as they occur in nature, . . .

They all consist principally of compounds of carbon and hydrogen, but often contain compounds of nitrogen, sulphur and oxygen, and in the solid forms, compounds of iron and alumina.

Peckham (1895), Chemist, Department of Finance, City of New York.
The word bitumen may, therefore, be strictly defined as a generic term that is used to designate a class of minerals as they occur in nature, ...

They all consist principally of compounds of carbon and hydrogen, but often contain compounds of nitrogen, sulphur and oxygen, and in the solid forms, compounds of iron and alumina.

Peckham (1895), Chemist, Department of Finance, City of New York.
Why two different names, bitumen and asphalt?

- In Europe, asphalt means a mixture of aggregates and bitumen. (Lake Asphalt in Trinidad!!!)

- In North America, asphalt means bitumen.
Why two different names, bitumen and asphalt?

- In Europe, asphalt means a mixture of aggregates and bitumen. (Lake Asphalt in Trinidad!!!)
- In North America, asphalt means bitumen.
What are Bitumen and Asphalt?

Various Forms of Bitumen

- Bitumen, asphalt, resin, tar, pitch, wax . . .
- Natural Bitumen:
 - Bitumens with inorganic impurities - Found in lakes in Trinidad, Venezuela, Cuba and as Tar sands in Athabasca etc.
 - Bitumens without any inorganic impurities - Gilsonite, Grahamite, Glance Pitch, Wurtzilite, Albertite, Elaterite, Imposonite etc.
Various Forms of Bitumen

- Bitumen, asphalt, resin, tar, pitch, wax ...
- Natural Bitumen:
 1. Bitumens with inorganic impurities - Found in lakes in Trinidad, Venezuela, Cuba and as Tar sands in Athabasca etc.
 2. Bitumens without any inorganic impurities - Gilsonite, Grahamite, Glance Pitch, Wurtzilite, Albertite, Elaterite, Imposonite etc.
Variations in Bitumen Forms

- Bitumen, asphalt, resin, tar, pitch, wax...
- Natural Bitumen:
 1. Bitumens with inorganic impurities - Found in lakes in Trinidad, Venezuela, Cuba and as Tar sands in Athabasca etc.
 2. Bitumens without any inorganic impurities - Gilsonite, Grahamite, Glance Pitch, Wurtzilite, Albertite, Elaterite, Imposonite etc.
Various Forms of Bitumen

- Bitumen, asphalt, resin, tar, pitch, wax . . .
- Natural Bitumen:
 1. Bitumens with inorganic impurities - Found in lakes in Trinidad, Venezuela, Cuba and as Tar sands in Athabasca etc.
 2. Bitumens without any inorganic impurities - Gilsonite, Grahamite, Glance Pitch, Wurtzilite, Albertite, Elaterite, Imposonite etc.
What are Bitumen and Asphalt?

Various Forms of Bitumen

- Artificial Bitumen:
 - Oil or petroleum asphalt: Fractional distillation
- Cracked asphalt: Destructive distillation
- Coal tar, water gas tar, pitches etc.

![Diagram of Bitumen and Asphalt production process]

What are Bitumen and Asphalt?

Various Forms of Bitumen

- Artificial Bitumen:
 - Oil or petroleum asphalt: Fractional distillation
 - Cracked asphalt: Destructive distillation
 - Coal tar, water-gas tars, pitches etc.
Various Forms of Bitumen

- **Artificial Bitumen:**
 1. Oil or petroleum asphalt: Fractional distillation
 2. Cracked asphalt: Destructive distillation
 3. Coal tar, water-gas tars, pitches etc.
Various Forms of Bitumen

- **Artificial Bitumen:**
 1. Oil or petroleum asphalt: Fractional distillation
 2. Cracked asphalt: Destructive distillation
 3. Coal tar, water-gas tars, pitches etc.

Artificial Bitumen

1. **Oil or petroleum asphalt:** Fractional distillation
2. **Cracked asphalt:** Destructive distillation
3. **Coal tar, water-gas tars, pitches etc.**
Various Forms of Bitumen

- **Artificial Bitumen:**
 1. Oil or petroleum asphalt: Fractional distillation
 2. Cracked asphalt: Destructive distillation
 3. Coal tar, water-gas tars, pitches etc.
What are Bitumen and Asphalt?

Various Forms of Bitumen

- **Artificial Bitumen:**
 1. Oil or petroleum asphalt: Fractional distillation
 2. Cracked asphalt: Destructive distillation
 3. Coal tar, water-gas tars, pitches etc.
Various Forms of Bitumen

- **Artificial Bitumen:**
 1. Oil or petroleum asphalt: Fractional distillation
 2. Cracked asphalt: Destructive distillation
 3. Coal tar, water-gas tars, pitches etc.
What are Bitumen and Asphalt?

Bitumen Classification Based on Solubility

- **Current classification system for bitumen (asphalt):** Abraham (1912), Pfeiffer (1950), Chilingarian and Yen (1978)

Solubility in Carbon Disulfide

- **Soluble**
 - Bitumens
 - Petroleum
 - 1. All Crudes
 - 2. Oil Seeps
 - Mineral Wax
 - 3. Ozocerite
 - 4. Montan Wax
 - 5. Hatchettite
 - 6. Scheererite
 - Asphalt
 - 7. Bermudez Pitch
 - 8. Tabbyite
 - 9. Liquid Gilsonite
 - 10. Argulite

- **Insoluble**
 - Pyrobitumens
 - Low Oxygen
 - Asphaltoids
 - 14. Wurtzilite
 - 15. Elaterite
 - 16. Albertite
 - 17. Impsonite
 - 18. Ingramite
 - 19. Anthraxolite
 - High Oxygen
 - Nonasphaltic Pyrobitumens
 - 20. Peat
 - 21. Lignite
 - 22. Coal

J. Murali Krishnan (IIT Madras)
1. What are Bitumen and Asphalt?

2. On the Abundance of Bitumen in Nature

3. Physical Chemistry of Asphalt
The pits were originally formed by ‘blow-outs’... filled by an inflow of soft, sticky ‘asphalt’, which in time became quiescent, possibly crusting over, but deadly to any form of beast that stepped into them. Once mired in the asphalt, the victim's struggles would sink it deeper and attract a host of carnivores to the feast.
Agricola’s Observation

Liquid bitumen, if there is much floating on springs, streams and rivers, is drawn up in buckets or other vessels; but, if there is little, it is collected with goose wings, pieces of linen, ralla, shreds of reeds and other things to which it easily adheres, and it is boiled in large brass or iron pots by fire and condensed.

Agricola (1556), De Re Metallica
Liquid bitumen, if there is much floating on springs, streams and rivers, is drawn up in buckets or other vessels; but, if there is little, it is collected with goose wings, pieces of linen, ralla, shreds of reeds and other things to which it easily adheres, and it is boiled in large brass or iron pots by fire and condensed.

Agricola (1556), De Re Metallica
Agricola’s Observation

Liquid bitumen, if there is much floating on springs, streams and rivers, is drawn up in buckets or other vessels; but, if there is little, it is collected with goose wings, pieces of linen, ralla, shreds of reeds and other things to which it easily adheres, and it is boiled in large brass or iron pots by fire and condensed.

Agricola (1556), De Re Metallica
Bitumen in Dead Sea

“... of this kind is the lake which the Hebrews call the Dead Sea, and which is quite full of bituminous fluids”

Agricola (1556), De Re Metallica

“The asphaltum, which is here collected, differs from that of the mines of Hasb´eia, as being more porous, and as having been apparently in a fluid state...”

Seetzen (1812), A Brief Account of the Countries adjoining the Lake of Tiberias, the Jordan, and the Dead Sea
Bitumen in Dead Sea

“... of this kind is the lake which the Hebrews call the Dead Sea, and which is quite full of bituminous fluids”

Agricola (1556), De Re Metallica

“The asphaltum, which is here collected, differs from that of the mines of Hasb´eia, as being more porous, and as having been apparently in a fluid state ...”

Seetzen (1812), A Brief Account of the Countries adjoining the Lake of Tiberias, the Jordan, and the Dead Sea
Bitumen in Dead Sea

“. . . of this kind is the lake which the Hebrews call the Dead Sea, and which is quite full of bituminous fluids”

Agricola (1556), De Re Metallica

“The asphaltum, which is here collected, differs from that of the mines of Hasb´eia, as being more porous, and as having been apparently in a fluid state . . .”

Seetzen (1812), A Brief Account of the Countries adjoining the Lake of Tiberias, the Jordan, and the Dead Sea
Use of Bitumen in Antiquity - Adhesive

- Adhesive of choice to fix flint to wooden handles

 Keller (1878), *The Lake Dwellings of Switzerland and other parts of Europe*

- A scraper and a Levallios flake from Syria (used around 40,000 BC)

Use of Bitumen in Antiquity - Adhesive

- Adhesive of choice to fix flint to wooden handles

 Keller (1878), The Lake Dwellings of Switzerland and other parts of Europe

- A scraper and a Levallios flake from Syria (used around 40,000 BC)

 Boëda et al., Nature, 380, 336-339, 1996
Use of Bitumen in Antiquity - Adhesive

- Adhesive of choice to fix flint to wooden handles

 Keller (1878), The Lake Dwellings of Switzerland and other parts of Europe

- A scraper and a Levallios flake from Syria (used around 40,000 BC)

 Boëda et al., Nature, 380, 336-339, 1996
Use of Bitumen in Antiquity - Adhesive

- Adhesive of choice to fix flint to wooden handles

 Keller (1878), The Lake Dwellings of Switzerland and other parts of Europe

- A scraper and a Levallios flake from Syria (used around 40,000 BC)

 Boëda et al., Nature, 380, 336-339, 1996
Use of Bitumen in Antiquity - Adhesive

- Adhesive of choice to fix flint to wooden handles

 Keller (1878), The Lake Dwellings of Switzerland and other parts of Europe

- A scraper and a Levallios flake from Syria (used around 40,000 BC)

 Boëda et al., Nature, 380, 336-339, 1996
Use of Bitumen in Antiquity

- Main use of bitumen in antiquity and prehistory (Hummalian period - 180,000 BC)

<table>
<thead>
<tr>
<th>use of bitumen</th>
<th>examples</th>
<th>excavations with examples studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>mortars in construction building</td>
<td>temples, palaces, terraces, floors, ziggurats, door threshold, courtyard</td>
<td>Mari, Babylon, Larsa, Haradum, Qal’at al-Bahrain, Mleiha, Failaka</td>
</tr>
<tr>
<td>waterproofing agent</td>
<td>mats, baskets, jars, water reserves, bathrooms, water pipes, cisterns, boats, sarcophagi</td>
<td>Tell es-Sawwan, Tell el’Oueili, Qal’at al-Bahrain, Saar, Baghdad, Ra’s al-Junayz, Susa, Failaka, Tell Brak</td>
</tr>
<tr>
<td>adhesive and glue</td>
<td>sickles, tool handles, statues, jars, decoration (game, lyre, temple, pillar, ostrich egg)</td>
<td>Tell Atij, Netiv Hagdud, Umm El Tlel, Mari, Tell Halula, Ras Shamra, Susa</td>
</tr>
<tr>
<td>domestic artefacts</td>
<td>spindle whorls, balls, dice, wall cones</td>
<td>Tell el’Oueili, Failaka, Saar?, Qal’at al-Bahrain, Susa, Tell Brak</td>
</tr>
<tr>
<td>jewellery</td>
<td>bead, ring, gold badges on clothing or for horse harnesses</td>
<td>Umm al-Qaiwwain, Ulu Burun, Susa, Saar</td>
</tr>
<tr>
<td>sculpture</td>
<td>sculpture, cylinder and stamp seal of Susa in bitumen mastic</td>
<td>Susa</td>
</tr>
<tr>
<td>mummification</td>
<td>mixed with conifer resin, beeswax, grease to prepare mixtures for embalming</td>
<td>Egyptian mummies from the Queen valley and from several Museums (Lyon, Hannover, Paris)</td>
</tr>
</tbody>
</table>

Uses of Bitumen from Prehistoric to Modern times - Sculpture

- Bituminous Mastic sculpture at Susa
 - Susa is located in the southwestern Iran, in the Khuzistan province.
 - Sculptures of this form date to 4000 BC were made using Bitumen Mastic (bitumen mixed with varied mineral elements and subjected to a thermal process around 250 °C, an annealed bitumen mastic).
Uses of Bitumen from Prehistoric to Modern times - Sculpture

- Bituminous Mastic sculpture at Susa
 - Susa is located in the southwestern Iran, in the Khuzistan province.

Sculptures of this form date to 4000 BC were made using Bitumen Mastic (bitumen mixed with varied mineral elements and subjected to a thermal process around 250 °C, an annealed bitumen mastic).
Uses of Bitumen from Prehistoric to Modern times - Sculpture

- Bituminous Mastic sculpture at Susa
 - Susa is located in the southwestern Iran, in the Khuzistan province.

- Sculptures of this form date to 4000 BC were made using Bitumen Mastic (bitumen mixed with varied mineral elements and subjected to a thermal process around 250 °C, an annealed bitumen mastic).
Uses of Bitumen from Prehistoric to Modern times - Sculpture

- The 'Ram in a Thicket' From Ur, southern Iraq, about 2600-2400 BC, (Woolley and Moorey, Ur of the Chaldees, 1982).

- ... a thin wash of bitumen acting as a glue to fix the metal on to the wood. The head and legs were mortised into a rudimentary wooden body which was next rounded off into proper shape with plaster of paris and given a thick coat of bitumen, a thin silver plate was fixed over the belly, and into the bitumen covering back and sides were pressed the locks of hair ...
The 'Ram in a Thicket’ From Ur, southern Iraq, about 2600-2400 BC, (Woolley and Moorey, Ur of the Chaldees, 1982).

...a thin wash of bitumen acting as a glue to fix the metal on to the wood. The head and legs were mortised into a rudimentary wooden body which was next rounded off into proper shape with plaster of paris and given a thick coat of bitumen, a thin silver plate was fixed over the belly, and into the bitumen covering back and sides were pressed the locks of hair...
On the Abundance of Bitumen in Nature

Uses of Bitumen from Prehistoric to Modern times - Sculpture

- The 'Ram in a Thicket' From Ur, southern Iraq, about 2600-2400 BC, (Woolley and Moorey, Ur of the Chaldees, 1982).

 ... a thin wash of bitumen acting as a glue to fix the metal on to the wood. The head and legs were mortised into a rudimentary wooden body which was next rounded off into proper shape with plaster of paris and given a thick coat of bitumen, a thin silver plate was fixed over the belly, and into the bitumen covering back and sides were pressed the locks of hair ...
The 'Ram in a Thicket' From Ur, southern Iraq, about 2600-2400 BC, (Woolley and Moorey, *Ur of the Chaldees*, 1982).

...a thin wash of bitumen acting as a glue to fix the metal on to the wood. The head and legs were mortised into a rudimentary wooden body which was next rounded off into proper shape with plaster of paris and given a thick coat of bitumen, a thin silver plate was fixed over the belly, and into the bitumen covering back and sides were pressed the locks of hair...
The ’Ram in a Thicket’ From Ur, southern Iraq, about 2600-2400 BC, (Woolley and Moorey, *Ur of the Chaldees*, 1982).

... a thin wash of bitumen acting as a glue to fix the metal on to the wood. The head and legs were mortised into a rudimentary wooden body which was next rounded off into proper shape with plaster of paris and given a thick coat of bitumen, a thin silver plate was fixed over the belly, and into the bitumen covering back and sides were pressed the locks of hair ...
The substance known as *mummy* is a natural blend of pitch and bitumen and the Iranians and the Arabs gave it the name of *mumiya* because of its similarity to *wax* (*mum* in Persian).

The artificial mixture (spices, resins and bitumen) prepared by the Egyptians used to preserve their dead was also called *mumiya*, and a body preserved in this manner was termed *mumiyya* and later in French as *momie* and in English as *mummy*.
The substance known as *mummy* is a natural blend of pitch and bitumen and the Iranians and the Arabs gave it the name of *mumiya* because of its similarity to *wax* (*mum* in Persian).

The artificial mixture (spices, resins and bitumen) prepared by the Egyptians used to preserve their dead was also called *mumiya*, and a body preserved in this manner was termed *mumiyya* and later in French as *momie* and in English as *mummy*.
Uses of Bitumen from Prehistoric to Modern times - Mummification

- In the 16th and 17th centuries, mummy formed one of the ordinary drugs.

- The demand for mummy as a curative grew to such an extent that corpses were bought or stolen, filled with ordinary bitumen and then treated to look like real mummies.

 Pettigrew (1834), *History of Egyptian Mummies*
In the 16th and 17th centuries, mummy formed one of the ordinary drugs.

The demand for mummy as a curative grew to such an extent that corpses were bought or stolen, filled with ordinary bitumen and then treated to look like real mummies.

Pettigrew (1834), *History of Egyptian Mummies*
Uses of Bitumen from Prehistoric to Modern Times -
Photography

- Joseph Nicéphore Niépce (1765 - 1833)

 1822: Realisation of the copy of a drawing by the single action of light on a glass plate coated with Judea bitumen (portrait of the Pope Pius VII)
Uses of Bitumen from Prehistoric to Modern Times - Photography

Joseph Nicéphore Niépce (1765 - 1833)

1822 : Realisation of the copy of a drawing by the single action of light on a glass plate coated with Judea bitumen (portrait of the Pope Pius VII)
On the Abundance of Bitumen in Nature

Uses of Bitumen from Prehistoric to Modern Times - Photography

- 1827: Point de vue du Gras on an unetched tin plate (the only preserved image achieved by Niépce with a *Camera Obscura* that is representative of this step of his research)

 ![Image](image.jpg)

- The process of Heliography is possible by virtue of the light sensitivity of bitumen. When exposed to light, bitumen undergoes a cross-linking process.
Uses of Bitumen from Prehistoric to Modern Times - Photography

- 1827: Point de vue du Gras on an unetched tin plate (the only preserved image achieved by Niépce with a Camera Obscura that is representative of this step of his research)

The process of Heliography is possible by virtue of the light sensitivity of bitumen. When exposed to light bitumen undergoes a cross-linking process.
More than 250 Current Known Uses of Bitumen

<table>
<thead>
<tr>
<th>Agriculture</th>
<th>Miscellaneous</th>
<th>Compositions</th>
<th>Paving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damp-proofing and waterproofing buildings, structures, Disinfectants, Fence post coating, Mulches, Mulching paper, Paved barn floors, barnyards, feed platforms, etc., Protection tanks, vats, etc., Protection for concrete structures, Tree paints, Water and moisture barriers, (above and below ground) Wind and water erosion control, Weather modification areas.</td>
<td>Air drying paints, varnishes, Artificial timber, Ebonizing timber, Insulating paints, Plumbing, pipes, Treated awnings.</td>
<td>Black grease, Buffing compounds, Cable splicing compound, Coffin linings, Embalming, Etching compositions, Extenders, Explosives, Fire extinguisher compounds, Joint fillers, Lap cement, Lubricating grease, Pipe coatings, dips, joint seals, Plastic cements, Plasticisers, Preservatives, Printing inks, Well drilling fluid, Wooden cask liners.</td>
<td>(See also Hydraulics, Agriculture, Railways, Recreation) Airport runways, taxiways, aprons, etc. Asphalt blocks, Brick fillers, Bridge deck surfacing, Crack fillers, Curbs, gutters, drainage ditches, Floors for buildings, Warehouses, garages, etc. Highways, roads, streets, shoulders, Parking lots, driveways, Portland cement concrete underseal, Roof-deck parking, Sidewalks, footpaths, soil stabilisation.</td>
</tr>
<tr>
<td>Hydraulic and erosion control</td>
<td>Hydraulic and erosion control</td>
<td>**Armoured bituminized fabrics, Burlap impregnation, Canvas treating, Carpeting medium, Deck cloth impregnation, Fabrics, felts, Mildew prevention, Packing papers, Pipes and pipe wrapping, Planks, Rugs, asphalt base,</td>
<td></td>
</tr>
<tr>
<td>Hydraulic and erosion control</td>
<td>Canal linings, sealants, Catchment area, basins, Dam grouting, Dam linings, protection, Dike protection, Ditch linings, Drainage gutters, structures, Embankment protection, Groynes, Jetties, Levee protection, Mattresses for levee and bank protection, Membrane linings, water proofing, Reservoir Revetments, Sand dune stabilization, Sewage lagoons, oxidation ponds, Swimming pools,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td>Buildings</td>
<td>Buildings</td>
<td>Buildings</td>
</tr>
<tr>
<td>Floors</td>
<td>Floors</td>
<td>Floors</td>
<td>Floors</td>
</tr>
<tr>
<td>Damp-proofing and waterproofing, Floor compositions, tiles, coverings, Insulating fabrics,</td>
<td>Membrane linings, water proofing, Reservoir</td>
<td>**Armoured bituminized fabrics, Burlap impregnation, Canvas treating, Carpeting medium, Deck cloth impregnation, Fabrics, felts, Mildew prevention, Packing papers, Pipes and pipe wrapping, Planks, Rugs, asphalt base,</td>
<td>**Armoured bituminized fabrics, Burlap impregnation, Canvas treating, Carpeting medium, Deck cloth impregnation, Fabrics, felts, Mildew prevention, Packing papers, Pipes and pipe wrapping, Planks, Rugs, asphalt base,</td>
</tr>
</tbody>
</table>
More than 250 Current known Uses of Bitumen - Continued

<table>
<thead>
<tr>
<th>Papers, Step treads.</th>
<th>Waste ponds, Water barriers.</th>
<th>Sawdust, cork, asphalts, composition, treated leather, wrapping papers, paints, varnishes, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roofing</td>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
</tr>
<tr>
<td>Building papers, built-up roof adhesives, felts, primers, caulking compounds, cement waterproofing compounds, cleats for roofing, glass wool compositions, insulating fabrics, felts, papers, joint filler compounds, laminated roofing shingles, liquid-roof coatings, plastic cements, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls, siding, ceilings</td>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
</tr>
<tr>
<td>Automotive</td>
<td>Electrical</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Acoustical blocks, compositions, felts, architectural decoration, bricks, brick siding, building blocks, papers, damp-proofing coatings, compositions, insulating board, fabrics, felts, paper, joint filler compounds, masonry coatings, coatings, plaster boards, putty, siding compositions, soundproofing, stucco base, wallboard.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum foil compositions using bitumen</td>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed felts, conduit insulation, lamination, insulating boards, paint compositions, papers, pipe wrappings, roofing, shingles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical compositions, felts, brake linings, clutch facings, floor sound deadeners, friction elements, insulating felts, panel boards, shim strips, tacking strips, underseal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armature carbons, windings, battery boxes, carbons, electrical insulating compounds, papers, tapes, wire coatings, junction box compound, moulded conduits.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Railways
- Ballast treatment,
- Curve lubricant,
- Dust laying,
- Paved ballast, sub-ballast,
- Paved crossings,
- Freight yards,
- Station platforms,
- Rail fillers,
- Railway sleepers,
- Sleeper impregnating,
- Stabilisation.

Recreation
Paved surfaces for:
- Dance pavilions,
- Drive-in movies,
- Gymnasiums, sport arenas,
- Playground,
- School yards,
- Race tracks,
- Running tracks,
- Skating tracks,
- Swimming and wading pools,
- Tennis courts, handball courts.

Bases for:
- Synthetic playing field and running track surfaces.
Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
On the Abundance of Bitumen in Nature

Uses of Bitumen from Prehistoric to Modern times - Pavement Construction

- 2800 BC - In Asia Minor, Mesopotamia and Persia - Extensive use of Bitumen tracks.
- 2400 BC - India - Extensive use of bitumen joined bricks for pavement.
- 100 BC - North Western Europe - Roman log roads
- 1837 AD - Paris - Seyssel mastic for footpaths
- 1869 AD - London - Asphalt
- 1872 AD - Union Square, New York - Compressed Neuchatel rock asphalt
- 1876 AD - Berlin - Val de Travers asphalt
- 1876 AD - Pennsylvania Avenue, Washington - Rock asphalt, later repaired with Trinidad asphalt mixture
Uses of Bitumen from Prehistoric to Modern times - Pavements

Fig. 10.
Processional road in Temple of Ishtar at Assur (1: 40).

Fig. 11.
Processional road “Aiburshabu” in Babylon (1: 60).
On the Abundance of Bitumen in Nature

Uses of Bitumen from Prehistoric to Modern times - A typical pavement cross-section used now

Full-Depth Asphalt Pavement

Asphalt Surface → Asphalt-aggregate mixture
Asphalt Base → Asphalt-aggregate mixture, or granular material treated with asphalt.
Prepared Subgrade

Asphalt Pavement With Untreated Base (and Subbase)

Asphalt Surface (asphalt-aggregate mixture)
Base, Granular material—normally untreated but sometimes treated with something other than asphalt.
Subbase, Granular material or selected soil. Normally not treated.
Prepared Subgrade

Asphalt Pavement With Portland Cement Concrete or Combined Portland Cement Concrete and Asphalt Base

Asphalt Surface, asphalt-aggregate mixture.
Base—portland cement concrete.
Asphalt-aggregate mixture.
Prepared subgrade.
Uses of Bitumen from Prehistoric to Modern times - Bituminization of Radioactive Wastes

- For the past 30 years, more than 20 member Nations of IAEC have been using bituminization of radioactive wastes.
- Nuclear wastes are embedded in molten bitumen (180 to 200 °C), cooled and then disposed off.
- Production of radiolytic gases (H_2, CH_4, CO_2) depends upon the type of bitumen, dosage rate etc.
- Release of radiolytic gases can result in crack formation in oxidized asphalt and bubbling in unoxidized asphalt.
- IAEC uses a combination of empirical tests such as Penetration test, Ring and Ball test and Ductility test for specifications. (These tests are gradually being phased out in SUPERPAVE specifications for Highway Constructions!!!).
For the past 30 years, more than 20 member Nations of IAEC have been using bituminization of radioactive wastes.

Nuclear wastes are embedded in molten bitumen (180 to 200 °C), cooled and then disposed off.

Production of radiolytic gases (H₂, CH₄, CO₂) depends upon the type of bitumen, dosage rate etc.

Release of radiolytic gases can result in crack formation in oxidized asphalt and bubbling in unoxidized asphalt.

IAEC uses a combination of empirical tests such as Penetration test, Ring and Ball test and Ductility test for specifications. (These tests are gradually being phased out in SUPERPAVE specifications for Highway Constructions!!!).
Uses of Bitumen from Prehistoric to Modern times - Bituminization of Radioactive Wastes

- For the past 30 years, more than 20 member Nations of IAEC have been using bituminization of radioactive wastes.
- Nuclear wastes are embedded in molten bitumen (180 to 200 °C), cooled and then disposed off.
- Production of radiolytic gases (H₂, CH₄, CO₂) depends upon the type of bitumen, dosage rate etc.
- Release of radiolytic gases can result in crack formation in oxidized asphalt and bubbling in unoxidized asphalt.
- IAEC uses a combination of empirical tests such as Penetration test, Ring and Ball test and Ductility test for specifications. (These tests are gradually being phased out in SUPERPAVE specifications for Highway Constructions!!!).
For the past 30 years, more than 20 member Nations of IAEC have been using bituminization of radioactive wastes.

Nuclear wastes are embedded in molten bitumen (180 to 200 °C), cooled and then disposed off.

Production of radiolytic gases (H₂, CH₄, CO₂) depends upon the type of bitumen, dosage rate etc.

Release of radiolytic gases can result in crack formation in oxidized asphalt and bubbling in unoxidized asphalt.

IAEC uses a combination of empirical tests such as Penetration test, Ring and Ball test and Ductility test for specifications. (These tests are gradually being phased out in SUPERPAVE specifications for Highway Constructions!!!).
Uses of Bitumen from Prehistoric to Modern times - Bituminization of Radioactive Wastes

- For the past 30 years, more than 20 member Nations of IAEC have been using bituminization of radioactive wastes.
- Nuclear wastes are embedded in molten bitumen (180 to 200 °C), cooled and then disposed off.
- Production of radiolytic gases (H₂, CH₄, CO₂) depends upon the type of bitumen, dosage rate etc.
- Release of radiolytic gases can result in crack formation in oxidized asphalt and bubbling in unoxidized asphalt.
- IAEC uses a combination of empirical tests such as Penetration test, Ring and Ball test and Ductility test for specifications. (*These tests are gradually being phased out in SUPERPAVE specifications for Highway Constructions!!!*)
On the Abundance of Bitumen in Nature

Uses of Bitumen from Prehistoric to Modern times - Bituminized radioactive waste leaching

- Current state of art: Diffusion of water through bitumen - Fick’s Law
What are Bitumen and Asphalt?

On the Abundance of Bitumen in Nature

Physical Chemistry of Asphalt
Boussingault (1837) carried out some of the early experiments on the composition of bitumen (bitumen of Becherlbronn) and classified it into two groups, namely petrolene and asphaltene.

“In conclusion, it is seen that the glutinous bitumens may be considered as mixtures, probably in all proportions, of two principles, each of which has a definite composition. One of these principles (asphaltene) fixed and solid, approaches asphalt in its nature. The other (petrolene) liquid, oily and volatile, resembles in some of its properties, certain varieties of petroleum. It may, then, be conceived that whilst the consistency of bitumen varies, it may be said to infinity; it suffices that one or the other of the two principles dominates the mixture, thereby giving such or such a degree of fluidity.”

Boussingault, M., Memoire sur la Composition des Bitumes, Annales de Chimie et de Physique, 1837, LXIV, 141-151.
Constitution of Asphalt

- Boussingault (1837) carried out some of the early experiments on the composition of bitumen (bitumen of Becherlbronn) and classified it into two groups, namely petrolene and asphaltene.

- “In conclusion, it is seen that the glutinous bitumens may be considered as mixtures, probably in all proportions, of two principles, each of which has a definite composition. One of these principles (asphaltene) fixed and solid, approaches asphalt in its nature. The other (petrolene) liquid, oily and volatile, resembles in some of its properties, certain varieties of petroleum. It may, then, be conceived that whilst the consistency of bitumen varies, it may be said to infinity; it suffices that one or the other of the two principles dominates the mixture, thereby giving such or such a degree of fluidity.”

 Boussingault, M., Memoire sur la Composition des Bitumes, Annales de Chimie et de Physique, 1837, LXIV, 141-151.
Constitution of Asphalt

- Kayser (1879) isolated asphalt into ‘α’, ‘β’ and ‘γ’ asphalts
 “...α’ asphalt - oily, the ‘β’ asphalt was a solid gummy substance melting at 60 °C and the ‘γ’ asphalt had the same consistency as ‘β’ asphalt but melted at 165 °C.

- Nellensteyn (1924) - “Asphalt when solidifying shows a very marked increase in viscosity without crystallization. Other bitumens show either crystallisation or a general increase in viscosity.”
 “...asphalt contains elementary carbon in colloidal form and that this colloidal form is the essential constituent of asphalt”

- Errera (1923) - “It would seem probable from these experiments that the solvents used is at least as important a factor as the character of the asphalt”
Constitution of Asphalt

Kayser (1879) isolated asphalt into ‘α’, ‘β’ and ‘γ’ asphalts
“...α’ asphalt - oily, the ‘β’ asphalt was a solid gummy substance melting at 60 °C and the ‘γ’ asphalt had the same consistency as ‘β’ asphalt but melted at 165 °C.

Nellensteyn (1924) - “Asphalt when solidifying shows a very marked increase in viscosity without crystallization. Other bitumens show either crystallisation or a general increase in viscosity.”
“...asphalt contains elementary carbon in colloidal form and that this colloidal form is the essential constituent of asphalt”

Errera (1923) - “It would seem probable from these experiments that the solvents used is at least as important a factor as the character of the asphalt”
Constitution of Asphalt

Kayser (1879) isolated asphalt into ‘α’, ‘β’ and ‘γ’ asphalts
“...α’ asphalt - oily, the ‘β’ asphalt was a solid gummy substance melting at 60 °C and the ‘γ’ asphalt had the same consistency as ‘β’ asphalt but melted at 165 °C.

Nellensteyn (1924) - “Asphalt when solidifying shows a very marked increase in viscosity without crystallization. Other bitumens show either crystallisation or a general increase in viscosity.”
“...asphalt contains elementary carbon in colloidal form and that this colloidal form is the essential constituent of asphalt”

Errera (1923) - “It would seem probable from these experiments that the solvents used is at least as important a factor as the character of the asphalt”
Constitution of Asphalt

- Nellensteyn (1931)- Application of colloidal chemistry to investigate asphalt
 - the medium,
 - a lyophile part: the protective bodies and
 - a lyophobe part: the ultramicrons.

- “The stability of the whole system in the first place depends upon the relation between the micelles and the medium. Changes in this stability, which are known as flocculate and peptizing reactions, give rise to a ‘reversible flocculation’.”

- “...it is certainly very mysterious that the coagulated bitumen easily expels the water, while molten bitumen adheres very poorly to moistened surfaces of mineral matter”.

J. Murali Krishnan (IIT Madras)
Constitution of Asphalt

- Nellensteyn (1931)- Application of colloidal chemistry to investigate asphalt
 - the medium,
 - a lyophile part: the protective bodies and
 - a lyophobe part: the ultramicrons.

 “The stability of the whole system in the first place depends upon the relation between the micelles and the medium. Changes in this stability, which are known as flocculate and peptizing reactions, give rise to a ‘reversible flocculation’.”

 “… it is certainly very mysterious that the coagulated bitumen easily expels the water, while molten bitumen adheres very poorly to moistened surfaces of mineral matter”.
Constitution of Asphalt

- Nellensteyn (1931)- Application of colloidal chemistry to investigate asphalt
 - the medium,
 - a lyophile part: the protective bodies and
 - a lyophobe part: the ultramicrons.

“The stability of the whole system in the first place depends upon the relation between the micelles and the medium. Changes in this stability, which are known as flocculate and peptizing reactions, give rise to a ‘reversible flocculation’.”

“...it is certainly very mysterious that the coagulated bitumen easily expels the water, while molten bitumen adheres very poorly to moistened surfaces of mineral matter”.
Constitution of Asphalt

- Nellensteyn (1931)- Application of colloidal chemistry to investigate asphalt
 - the medium,
 - a lyophile part: the protective bodies and
 - a lyophobe part: the ultramicrons.

“The stability of the whole system in the first place depends upon the relation between the micelles and the medium. Changes in this stability, which are known as flocculate and peptizing reactions, give rise to a ‘reversible flocculation’.

“...it is certainly very mysterious that the coagulated bitumen easily expels the water, while molten bitumen adheres very poorly to moistened surfaces of mineral matter.”
Constitution of Asphalt

- Nellensteyn (1931)- Application of colloidal chemistry to investigate asphalt
 - the medium,
 - a lyophile part: the protective bodies and
 - a lyrophobe part: the ultramicrons.

“The stability of the whole system in the first place depends upon the relation between the micelles and the medium. Changes in this stability, which are known as flocculate and peptizing reactions, give rise to a ‘reversible flocculation’.”

“... it is certainly very mysterious that the coagulated bitumen easily expels the water, while molten bitumen adheres very poorly to moistened surfaces of mineral matter”.

Constitution of Asphalt

- Nellensteyn (1931)- Application of colloidal chemistry to investigate asphalt
 - the medium,
 - a lyophile part: the protective bodies and
 - a lyophobe part: the ultramicrons.

- “The stability of the whole system in the first place depends upon the relation between the micelles and the medium. Changes in this stability, which are known as flocculate and peptizing reactions, give rise to a ‘reversible flocculation’.”

- “...it is certainly very mysterious that the coagulated bitumen easily expels the water, while molten bitumen adheres very poorly to moistened surfaces of mineral matter.”
Constitution of Asphalt

- Kalichevsky and Fulton (1931): Three constituent mixture
 - Asphaltenes, asphaltic resins and oils
 - Asphaltenes imparting hardness and high melting point to the mixture
 - Asphaltic resins responsible for the ductility and tensile strength of the mixture as well as playing the role as a stabilizer and
 - Oily constituents acting as the dispersing phase
Constitution of Asphalt

- Kalichevsky and Fulton (1931) : Three constituent mixture
- Asphaltenes, asphaltic resins and oils
 - Asphaltenes imparting hardness and high melting point to the mixture
 - Asphaltic resins responsible for the ductility and tensile strength of the mixture as well as playing the role as a stabilizer and
 - Oily constituents acting as the dispersing phase
Constitution of Asphalt

- Kalichevsky and Fulton (1931) : Three constituent mixture
 - Asphaltenes, asphaltic resins and oils
 - Asphaltenes imparting hardness and high melting point to the mixture
 - Asphaltic resins responsible for the ductility and tensile strength of the mixture as well as playing the role as a stabilizer and
 - Oily constituents acting as the dispersing phase
Constitution of Asphalt

- Kalichevsky and Fulton (1931): Three constituent mixture
- Asphaltenes, asphaltic resins and oils
- Asphaltenes imparting hardness and high melting point to the mixture
- Asphaltic resins responsible for the ductility and tensile strength of the mixture as well as playing the role as a stabilizer and
- Oily constituents acting as the dispersing phase
Constitution of Asphalt

- Kalichevsky and Fulton (1931): Three constituent mixture
- Asphaltenes, asphaltic resins and oils
- Asphaltenes imparting hardness and high melting point to the mixture
- Asphaltic resins responsible for the ductility and tensile strength of the mixture as well as playing the role as a stabilizer and
- Oily constituents acting as the dispersing phase
Baskin (1932) : “Asphalt is in no sense a distinct group by itself, but rather a portion of the crude petroleum containing several groups in form of a mixture or mutual solution. The character and makeup of each group to start with depends to a great extent on source. For any given consistency, the oily constituents in a California crude residue are different in physical and chemical properties from those extracted from the same consistency Panuco residual. This likewise, undoubtedly holds true of the resins and the asphaltenes”
And finally the Corbett Fractions

- Make-up of crude petroleum, Corbett, 1984
And finally the Corbett Fractions

Summary of composition and characterization as found in typical 85/100 straight reduced asphalt (Corbett:1969)

<table>
<thead>
<tr>
<th>Component</th>
<th>Wt % range</th>
<th>Physical Nature</th>
<th>Density 20/4°C</th>
<th>Molecular Wt (Av)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturates</td>
<td>5-15</td>
<td>Colorless liquid</td>
<td>0.87</td>
<td>650</td>
</tr>
<tr>
<td>Naphthene-Aromatics</td>
<td>30-45</td>
<td>Yellow to Red Liquid</td>
<td>0.99</td>
<td>725</td>
</tr>
<tr>
<td>Polar-Aromatics</td>
<td>30-45</td>
<td>Black Solid</td>
<td>1.07</td>
<td>1150</td>
</tr>
<tr>
<td>Asphaltenes</td>
<td>5-20</td>
<td>Brown to Black Solid</td>
<td>1.15</td>
<td>3500</td>
</tr>
</tbody>
</table>
Effect of crude source on composition (Corbett:1969)

<table>
<thead>
<tr>
<th></th>
<th>Venezuelan</th>
<th>USA</th>
<th>Mexico</th>
<th>Mid-East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturates</td>
<td>14.0 %</td>
<td>10.5 %</td>
<td>8.5 %</td>
<td>8.0 %</td>
</tr>
<tr>
<td>Naphthen-Aromatics</td>
<td>34.5 %</td>
<td>38.5 %</td>
<td>29.8 %</td>
<td>38.5 %</td>
</tr>
<tr>
<td>Polar-Aromatics</td>
<td>36.3 %</td>
<td>33.4 %</td>
<td>42.6 %</td>
<td>37.0 %</td>
</tr>
<tr>
<td>Asphaltenes</td>
<td>14.1 %</td>
<td>16.8 %</td>
<td>28.3 %</td>
<td>15.5 %</td>
</tr>
<tr>
<td>Penetration @ 77 °F</td>
<td>90</td>
<td>92</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>Soft Point, °F</td>
<td>114</td>
<td>114</td>
<td>116</td>
<td>115</td>
</tr>
</tbody>
</table>
Corbett Vs. Rostler

Corbett

n-heptane → asphaltenes → n-pentane

petrolenes

saturates

napthene aromatics

polar aromatics

Rostler

maltenes

paraffins

second acidiffins

first acidiffins

nitrogen bases
Pfeiffer and Saal (1940): Asphalts are visualized as colloidal system, with asphaltenes forming the centers of micelle and having a more pronounced aromatic nature, the asphaltenes were assumed to be surrounded by lighter constituents of less aromatic nature, and there were no distinct interphases between the micelles and the medium surrounding it.

- Filled hexagons - asphaltenes,
- Open hexagons - aromatic,
- Hollow circles - aromatic-naphthenic,
- Rod like structures - mixed napthenic-aliphatic and Dashes - Aliphatic
Some ‘Structural Models’ for Asphalt

- Pfeiffer and Saal (1940): Asphalts are visualized as colloidal system, with asphaltenes forming the centers of micelle and having a more pronounced aromatic nature, the asphaltenes were assumed to be surrounded by lighter constituents of less aromatic nature, and there were no distinct interphases between the micelles and the medium surrounding it.

- Filled hexagons - asphaltenes, Open hexagons - aromatic, Hollow circles - aromatic-naphthenic, Rod like structures - mixed napthenic-aliphatic and Dashes - Aliphatic
Pfeiffer and Saal (1940): Asphalts are visualized as colloidal system, with asphaltenes forming the centers of micelle and having a more pronounced aromatic nature, the asphaltenes were assumed to be surrounded by lighter constituents of less aromatic nature, and there were no distinct interphases between the micelles and the medium surrounding it.
Some ‘Structural Models’ for Asphalt

- Pfeiffer and Saal (1940): Asphalts are visualized as colloidal system, with asphaltenes forming the centers of micelle and having a more pronounced aromatic nature, the asphaltenes were assumed to be surrounded by lighter constituents of less aromatic nature, and there were no distinct interphases between the micelles and the medium surrounding it.

Filled hexagons - asphaltenes, Open hexagons - aromatic, Hollow circles - aromatic-naphthenic, Rod like structures - mixed napthenic-aliphatic and Dashes - Aliphatic
Some ‘Structural Models’ for Asphalt

- Pfeiffer and Saal (1940): Asphalts are visualized as a colloidal system, with asphaltenes forming the centers of micelle and having a more pronounced aromatic nature, the asphaltenes were assumed to be surrounded by lighter constituents of less aromatic nature, and there were no distinct interphases between the micelles and the medium surrounding it.

- Filled hexagons - asphaltenes, Open hexagons - aromatic, Hollow circles - aromatic-naphthenic, Rod like structures - mixed napthenic-aliphatic and Dashes - Aliphatic
Some ‘Structural Models’ for asphalt

- Dickie and Yen (1976): asphaltenes and resins pictured as repeating elements of similar composition with the difference in their chemical structure ascribable to solubility and aromaticity.
- ...the concept of molecular weight for asphalt may not be really applicable unless one defines clearly what part of the molecule is being measured.
- ...the unit cell molecular weight (C) would be totally different in comparison to the unit sheets (J) or the micelle (D) containing several associations of the unit cell.
Some ‘Structural Models’ for asphalt

Dickie and Yen (1976): asphaltenes and resins pictured as repeating elements of similar composition with the difference in their chemical structure ascribable to solubility and aromaticity.

... the concept of molecular weight for asphalt may not be really applicable unless one defines clearly what part of the molecule is being measured.

... the unit cell molecular weight (C) would be totally different in comparison to the unit sheets (J) or the micelle (D) containing several associations of the unit cell.
Some ‘Structural Models’ for asphalt

Dickie and Yen (1976): asphaltenes and resins pictured as repeating elements of similar composition with the difference in their chemical structure ascribable to solubility and aromaticity.

...the concept of molecular weight for asphalt may not be really applicable unless one defines clearly what part of the molecule is being measured.

...the unit cell molecular weight (C) would be totally different in comparison to the unit sheets (J) or the micelle (D) containing several associations of the unit cell.
Dickie and Yen (1976): asphaltenes and resins pictured as repeating elements of similar composition with the difference in their chemical structure ascribable to solubility and aromaticity.

... the concept of molecular weight for asphalt may not be really applicable unless one defines clearly what part of the molecule is being measured.

... the unit cell molecular weight (C) would be totally different in comparison to the unit sheets (J) or the micelle (D) containing several associations of the unit cell.
Some ‘Structural Models’ for asphalt

- Dickie and Yen (1976): asphaltenes and resins pictured as repeating elements of similar composition with the difference in their chemical structure ascribable to solubility and aromaticity.

- \textit{...the concept of molecular weight for asphalt may not be really applicable unless one defines clearly what part of the molecule is being measured.}

- \textit{...the unit cell molecular weight (C) would be totally different in comparison to the unit sheets (J) or the micelle (D) containing several associations of the unit cell.}
Some ‘Structural Models’ for asphalt

Dickie and Yen (1976): asphaltenes and resins pictured as repeating elements of similar composition with the difference in their chemical structure ascribable to solubility and aromaticity.

\[\ldots\text{the concept of molecular weight for asphalt may not be really applicable unless one defines clearly what part of the molecule is being measured.}\]

\[\ldots\text{the unit cell molecular weight (C) would be totally different in comparison to the unit sheets (J) or the micelle (D) containing several associations of the unit cell}\]
Some ‘Structural Models’ for asphalt

Dickie and Yen (1976): asphaltenes and resins pictured as repeating elements of similar composition with the difference in their chemical structure ascribable to solubility and aromaticity.

... the concept of molecular weight for asphalt may not be really applicable unless one defines clearly what part of the molecule is being measured.

... the unit cell molecular weight (C) would be totally different in comparison to the unit sheets (J) or the micelle (D) containing several associations of the unit cell.

A - Crystallite, B - Chain bundle, C - Particle, D - Micelle, E - Weak link, F - Gap and hole, G - Intracluster, H - Intercluster, I - Resin, J - Single layer, K - Petroporphyrin and L - Metal.
One Snapshot of the Structure of Asphalt

Rozeveld *et al.* (1997) : used environmental scanning electron microscope (ESEM), high performance gel permeation chromatography and thermogravimetric analyser on asphalt films of thickness 0.005 inch. The asphalt films were featureless initially, however, after several minutes of beam exposure, the network entanglement of the strands were revealed.

![Asphalt film images](image-url)
One Snapshot of the Structure of Asphalt

Rozeveld et al. (1997) : used environmental scanning electron microscope (ESEM), high performance gel permeation chromatography and thermogravimetric analyser on asphalt films of thickness 0.005 inch.

The asphalt films were featureless initially, however, after several minutes of beam exposure, the network entanglement of the strands were revealed.
One Snapshot of the Structure of Asphalt

Rozeveld *et al.* (1997) : used environmental scanning electron microscope (ESEM), high performance gel permeation chromatography and thermogravimetric analyser on asphalt films of thickness 0.005 inch.

The asphalt films were featureless initially, however, after several minutes of beam exposure, the network entanglement of the strands were revealed.
Multitude of Tests for Unraveling the Structure of Asphalt

- solvent precipitation,
- chemical precipitation,
- adsorption liquid chromatography,
- ion exchange liquid chromatography,
- coordination liquid chromatography,
- thin-layer chromatography,
- gas-liquid chromatography,
- size-exclusion chromatography,
- high pressure gel permeation chromatography,
- vapor pressure osmometry,
- mass spectrometry,
- electrophotometric spectroscopy,
- nuclear magnetic resonance spectroscopy,
- electron spin resonance spectroscopy,
- spectrochemical analysis,
- elemental analysis,
- distillation fractionation,
- wax content determination,
- photochemical reactions of asphalt,
- acid number determination,
- internal dispersion stability,
- titrimetric/gravimetric analysis...
Goodrich *et al.* (1986): “Some believe that today’s sophisticated analytical tools, computer-controlled instruments that work with milligrams of asphalt, should make the connection between asphalt composition and performance properties. These instruments are being applied to asphalt research and well-defined field problems. Fundamental chemical explanations of asphalt aging, adhesion, structure, and rheology have been proposed. Yet the complex chemical mix of even a single asphalt may never be adequately described.”
Asphalts with similar compositions but different properties from Goodrich et al. (1986)
Arab Oil Embargo in 1970’s resulted in United States processing crudes from different refineries.

“Asphaltenes: Where are you?”

“The asphalts are no good nowadays”

Strategic Highway Research Program (SHRP) and the ‘performance related specifications’ for asphalt cements

The SHRP spent a total of $150 million on research on asphalt concrete out of which $50 million was spent on asphalt research on a five year research program that started on 1987.
The SHRP Initiative of USA

- Arab Oil Embargo in 1970’s resulted in United States processing crudes from different refineries.
- “Asphaltenes: Where are you?”
- “The asphalts are no good nowadays”
- Strategic Highway Research Program (SHRP) and the ‘performance related specifications’ for asphalt cements
- The SHRP spent a total of $150 million on research on asphalt concrete out of which $50 million was spent on asphalt research on a five year research program that started on 1987.
The SHRP Initiative of USA

- Arab Oil Embargo in 1970’s resulted in United States processing crudes from different refineries.
- “Asphaltenes: Where are you?”
- “The asphalts are no good nowadays”
- Strategic Highway Research Program (SHRP) and the ‘performance related specifications’ for asphalt cements
- The SHRP spent a total of $150 million on research on asphalt concrete out of which $50 million was spent on asphalt research on a five year research program that started on 1987.
Arab Oil Embargo in 1970’s resulted in United States processing crudes from different refineries.

“Asphaltenes: Where are you?”

“The asphalts are no good nowadays”

Strategic Highway Research Program (SHRP) and the ‘performance related specifications’ for asphalt cements

The SHRP spent a total of $150 million on research on asphalt concrete out of which $50 million was spent on asphalt research on a five year research program that started on 1987.
Arab Oil Embargo in 1970’s resulted in United States processing crudes from different refineries.

“Asphaltenes: Where are you?”

“The asphalts are no good nowadays”

Strategic Highway Research Program (SHRP) and the ‘performance related specifications’ for asphalt cements

The SHRP spent a total of $150 million on research on asphalt concrete out of which $50 million was spent on asphalt research on a five year research program that started on 1987.
Physical Chemistry of Asphalt

The SHRP Initiative of USA

- SHRP Report 367, 1994: “asphalt cement is a relatively homogeneous and randomly distributed collection of molecules differing in polarity and molecular size”

- SHRP Report 686, 1994: “asphalt is a single phase mixture of many different polar and non-polar molecules, all of which interact with one another”

- Ion exchange chromatography - Separation of asphalt into strong and weak acids, strong and weak bases, neutrals and amphoteric
The SHRP Initiative of USA

- SHRP Report 367, 1994: “asphalt cement is a relatively homogeneous and randomly distributed collection of molecules differing in polarity and molecular size”
- SHRP Report 686, 1994: “asphalt is a single phase mixture of many different polar and non-polar molecules, all of which interact with one another”
- Ion exchange chromatography - Separation of asphalt into strong and weak acids, strong and weak bases, neutrals and amphoteric acids.
SHRP Report 367, 1994: “asphalt cement is a relatively homogeneous and randomly distributed collection of molecules differing in polarity and molecular size”

SHRP Report 686, 1994: “asphalt is a single phase mixture of many different polar and non-polar molecules, all of which interact with one another”

Ion exchange chromatography - Separation of asphalt into strong and weak acids, strong and weak bases, neutrals and amphoteric
SHRP Report 367, 1994

“A major effort has been the study of the rheology, or the viscoelastic properties, to determine the effects of shear, shear rate, and temperature. This effort has resulted in description of asphalt in terms of rheological master curves that show the variation in viscous and elastic components with shear and temperature. In general, all asphalts exhibit a glass like behavior at very low temperature, and are relatively fluid at high temperature, but the pathway from glass to fluid, or vice versa varies substantially from one asphalt to another.”
Viscosity (Pa·s) of Asphalts and Asphalts blended with IEC fractions at 60°C, 1 rad/s from SHRP Report 686, 1994

<table>
<thead>
<tr>
<th>SHRP Asphalt</th>
<th>AAD-1</th>
<th>AAG-1</th>
<th>AAK-1</th>
<th>AAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>131</td>
<td>240</td>
<td>413</td>
<td>258</td>
</tr>
<tr>
<td>Asphalt + Neutrals</td>
<td>40</td>
<td>131</td>
<td>117</td>
<td>137</td>
</tr>
<tr>
<td>Asphalt + Bases</td>
<td>327</td>
<td>346</td>
<td>656</td>
<td>399</td>
</tr>
<tr>
<td>Asphalt + Acids</td>
<td>174</td>
<td>285</td>
<td>517</td>
<td>292</td>
</tr>
<tr>
<td>Asphalt + Amphoterics</td>
<td>2,638</td>
<td>1,440</td>
<td>6,796</td>
<td>3,967</td>
</tr>
</tbody>
</table>

“...as a fraction, the amphoterics are the components of the asphalts governing high viscosities...”

“These results do not mean that no viscosity-enhancing species exist in acid, base, or neutral materials, or that no viscosity-reducing species exist in the amphoteric fractions.”

“...addition of amphoteric materials has a very large effect on the elastic character of the asphalt”
The SHRP Initiative of USA

- Viscosity (Pa·s) of Asphalts and Asphalts blended with IEC fractions at 60°C 1 rad/s from SHRP Report 686, 1994

<table>
<thead>
<tr>
<th>SHRP Asphalt</th>
<th>AAD-1</th>
<th>AAG-1</th>
<th>AAK-1</th>
<th>AAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>131</td>
<td>240</td>
<td>413</td>
<td>258</td>
</tr>
<tr>
<td>Asphalt + Neutrals</td>
<td>40</td>
<td>131</td>
<td>117</td>
<td>137</td>
</tr>
<tr>
<td>Asphalt + Bases</td>
<td>327</td>
<td>346</td>
<td>656</td>
<td>399</td>
</tr>
<tr>
<td>Asphalt + Acids</td>
<td>174</td>
<td>285</td>
<td>517</td>
<td>292</td>
</tr>
<tr>
<td>Asphalt + Amphoteric</td>
<td>2,638</td>
<td>1,440</td>
<td>6,796</td>
<td>3,967</td>
</tr>
</tbody>
</table>

“...as a fraction, the amphoteric components are the components of the asphalts governing high viscosities...”

“These results do not mean that no viscosity-enhancing species exist in acid, base, or neutral materials, or that no viscosity-reducing species exist in the amphoteric fractions.”

“...addition of amphoteric materials has a very large effect on the elastic character of the asphalt.”
The SHRP Initiative of USA

- Viscosity (Pa s) of Asphalts and Asphalts blended with IEC fractions at 60°C 1 rad/s from SHRP Report 686, 1994

<table>
<thead>
<tr>
<th>SHRP Asphalt</th>
<th>AAD-1</th>
<th>AAG-1</th>
<th>AAK-1</th>
<th>AAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>131</td>
<td>240</td>
<td>413</td>
<td>258</td>
</tr>
<tr>
<td>Asphalt + Neutrals</td>
<td>40</td>
<td>131</td>
<td>117</td>
<td>137</td>
</tr>
<tr>
<td>Asphalt + Bases</td>
<td>327</td>
<td>346</td>
<td>656</td>
<td>399</td>
</tr>
<tr>
<td>Asphalt + Acids</td>
<td>174</td>
<td>285</td>
<td>517</td>
<td>292</td>
</tr>
<tr>
<td>Asphalt + Amphoteric</td>
<td>2,638</td>
<td>1,440</td>
<td>6,796</td>
<td>3,967</td>
</tr>
</tbody>
</table>

“...as a fraction, the amphoteric are the components of the asphalts governing high viscosities...”

“These results do not mean that no viscosity-enhancing species exist in acid, base, or neutral materials, or that no viscosity-reducing species exist in the amphoteric fractions.”

“...addition of amphoteric materials has a very large effect on the elastic character of the asphalt”
Viscosity (Pa·s) of Asphalts and Asphalts blended with IEC fractions at 60 °C 1 rad/s from SHRP Report 686, 1994

<table>
<thead>
<tr>
<th>SHRP Asphalt</th>
<th>AAD-1</th>
<th>AAG-1</th>
<th>AAK-1</th>
<th>AAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>131</td>
<td>240</td>
<td>413</td>
<td>258</td>
</tr>
<tr>
<td>Asphalt + Neutrals</td>
<td>40</td>
<td>131</td>
<td>117</td>
<td>137</td>
</tr>
<tr>
<td>Asphalt + Bases</td>
<td>327</td>
<td>346</td>
<td>656</td>
<td>399</td>
</tr>
<tr>
<td>Asphalt + Acids</td>
<td>174</td>
<td>285</td>
<td>517</td>
<td>292</td>
</tr>
<tr>
<td>Asphalt + Amphoterics</td>
<td>2,638</td>
<td>1,440</td>
<td>6,796</td>
<td>3,967</td>
</tr>
</tbody>
</table>

“...as a fraction, the amphoterics are the components of the asphalts governing high viscosities...”

“These results do not mean that no viscosity-enhancing species exist in acid, base, or neutral materials, or that no viscosity-reducing species exist in the amphoteric fractions.”

“...addition of amphoteric materials has a very large effect on the elastic character of the asphalt”
Summary

- Asphalt is one of the oldest construction material known to humanity
- The physical and chemical structure of asphalt is quite complex
- In the next talk, we will discuss a modeling effort that takes into account, some of the complexities of asphalt
Summary

- Asphalt is one of the oldest construction material known to humanity
- The physical and chemical structure of asphalt is quite complex
- In the next talk, we will discuss a modeling effort that takes into account, some of the complexities of asphalt
Asphalt is one of the oldest construction material known to humanity.

The physical and chemical structure of asphalt is quite complex.

In the next talk, we will discuss a modeling effort that takes into account, some of the complexities of asphalt.
Acknowledgments

Professor K. R. Rajagopal
Texas A&M University