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Ω⊂ Rd , d = 2,3: bounded open Lipschitz domain,

T : length of the time interval of interest, and

Q := Ω× (0,T ): the associated space-time domain.

Consider the following system of nonlinear PDEs:

ρ(ut +div(u⊗u))−divTTT = ρf in Q, (1)

divu= 0 in Q, (2)

subject to the initial condition

u(·,0) = u0(·) in Ω, (3)

and the boundary conditions

u ·n= 0 on ∂Ω× (0,T ), (4)

λ(TTTn)τ +(1−λ)γ∗uτ = 0 on ∂Ω× (0,T ). (5)
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Constitutive equation for the Cauchy stress tensor TTT

We assume that the Cauchy stress TTT is decomposed as

TTT =−pIII+SSSv +SSSe, (6)

where

p : Q→ R is the pressure;
SSSv : Q→ Rd×d

sym is the viscous part of the stress;

SSSv and DDD(u) := 1
2(∇u+(∇u)T) are assumed to be related through

a maximal monotone graph described by the implicit relation:

GGG(SSSv,DDD(u)) = 0, (7)

where GGG : Rd×d
sym ×Rd×d

sym → Rd×d
sym is a continuous mapping.

Examples:

[Rajagopal (2003, 2006), Rajagopal and Srinivasa (2008)]

power-law fluids, stress power-law fluids, fluids with activation criteria (Bingham,
Herschel–Bulkley), and shear-rate dependent fluids with discontinuous viscosities.

SSSe : Q→ Rd×d
sym is the elastic part of the stress.
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Definition of SSSe: kinetic theory of polymers

George Uhlenbeck, Hans Kramers and Samuel Goudsmit
(Ann Arbor, Michigan – around 1928).
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Definition of SSSe

Let Di ⊂ Rd , i = 1, . . . ,K, be bounded open balls centred at 0.

Consider the Maxwellian M(q) := M1(q1) · · ·MK(qK), with qi ∈ Di, where

Mi(qi) :=
e−Ui(

1
2 |qi|2)∫

Di
e−Ui(

1
2 |pi|2)dpi

, i = 1, . . . ,K.
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SSSe is defined by the Kramers expression:

SSSe(x, t) := k
K

∑
i=1

∫
D

M(q)∇qiψ̂(x,q, t)⊗qi dq,

where q = (qT
1 , . . . ,q

T
N)

T and

ψ̂ := ψ/M

is the renormalized probability density function.
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Fokker–Planck equation

The probability density function satisfies the Fokker–Planck equation:

(M ψ̂)t +div(M ψ̂u)+divq (M ψ̂(∇u)q) =4(M ψ̂)+divqA(M ∇qψ̂) (8)

in O× (0,T ), with O := Ω×D, subject to the boundary conditions:

M ∇ψ̂ ·n= 0 on ∂Ω×D× (0,T ), (9)

(M ψ̂(∇u)qi−Ai(M ∇qψ̂)) ·ni = 0 on Ω×∂D̄i× (0,T ), (10)

for all i = 1, . . . ,K, and the initial condition

ψ̂(x,q,0) = ψ̂0(x,q) in O. (11)

A: Rouse matrix (symmetric, positive definite).
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Assumptions on the data

We identify the implicit relation (7) with a graph A ⊂ Rd×d
sym ×Rd×d

sym , i.e.,

GGG(SSS,DDD) = 0 ⇐⇒ (SSS,DDD) ∈ A .

We assume that, for some r ∈ (1,∞), A is a maximal monotone r-graph:

(A1) A includes the origin; i.e., (0,0) ∈ A ;

(A2) A is a monotone graph; i.e.,

(SSS1−SSS2) · (DDD1−DDD2)≥ 0 for all (DDD1,SSS1),(DDD2,SSS2) ∈ A ;

(A3) A is a maximal monotone graph; i.e., for any (DDD,SSS) ∈ Rd×d
sym ×Rd×d

sym ,

if (S̃SS−SSS) · (D̃DD−DDD)≥ 0 for all (D̃DD,S̃SS) ∈ A , then (DDD,SSS) ∈ A ;

(A4) A is an r-graph; i.e., there exist positive constants C1, C2 such that

SSS ·DDD≥C1(|DDD|r + |SSS|r
′
)−C2 for all (DDD,SSS) ∈ A .
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For the Maxwellian M we assume that

M ∈C(D)∩C0,1
loc (D)∩W 1,1

0 (D), and M > 0 on D. (12)

For the initial velocity u0 we assume that

u0 ∈ L2
0,div(Ω). (13)

For ψ̂0 := ψ0/M we assume that

ψ̂0 ≥ 0 a.e. in O, ψ̂0 log ψ̂0 ∈ L1
M(O), (14)

and in addition we require that∫
D

M(q) ψ̂0(·,q)dq ∈ L∞(Ω). (15)
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Theorem

For d ∈ {2,3} let Di ⊂ Rd , i = 1, . . . ,K, be bounded open balls centred at
the origin in Rd , let Ω⊂ Rd be a bounded open Lipschitz domain and

suppose f ∈ Lr′(0,T ;W−1,r′
0,div (Ω)), r ∈ (1,∞). Assume that A , given by GGG,

is a maximal monotone r-graph satisfying (A1) – (A4), the Maxwellian
M : D→ R satisfies (12), and (u0, ψ̂0) satisfy (13)–(15).

Then, there exist (u,SSSv,SSSe, ψ̂) such that

u ∈ L∞(0,T ;L2
0,div(Ω)d)∩Lr(0,T ;W 1,r

0 (Ω)d)∩W 1,r∗(0,T ;W−1,r∗
0,div (Ω)),

SSSv ∈ Lr′(0,T ;Lr′(Ω)d×d), SSSe ∈ L2(0,T ;L2(Ω)d×d),

ψ̂ ∈ L∞(Q;L1
M(D))∩L2(0,T ;W 1,1

M (O)), ψ̂≥ 0 a.e. in O× (0,T ),

M ψ̂ ∈W 1,1(0,T ;W−1,1(O)), ψ̂ log ψ̂ ∈ L∞(0,T ;L1
M(O)),

where
r∗ := min

{
r′,2,

(
1+ 2

d

)
r
}

and r′ := r
r−1 .

12 / 20



Theorem (Continued...)

Moreover, (1) is satisfied in the following sense:∫ T

0
〈ut ,w〉dt +

∫ T

0

(
− (u⊗u,∇w)+(SSSv,∇w)

)
dt

=
∫ T

0

(
− (SSSe,∇w)+ 〈f ,w〉

)
dt for all w ∈ L∞(0,T ;W 1,∞

0,div(Ω)),

where
(SSSv(x, t),DDD(u(x, t))) ∈ A for a.e. (x, t) ∈ Q,

and SSSe is given by the Kramers expression

SSSe(x, t) = k
K

∑
i=1

∫
D

M ∇qiψ̂(x,q, t)⊗qi dq for a.e. (x, t) ∈ Q.
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Theorem (Continued...)

In addition, the Fokker–Planck eqn (8) is satisfied in the following sense:∫ T

0

[
〈(M ψ̂)t ,ϕ〉− (Muψ̂,∇ϕ)O− (M ψ̂(∇u)q,∇qϕ)O

]
dt

+
∫ T

0

[
(M ∇ψ̂,∇ϕ)O +(MA∇qψ̂,∇qϕ)O

]
dt = 0

for all ϕ ∈ L∞(0,T ;W 1,∞(O)),

and the initial data are attained strongly in L2(Ω)d×L1
M(O), i.e.,

lim
t→0+
‖u(·, t)−u0(·)‖2

2 +‖ψ̂(·, t)− ψ̂0(·)‖L1
M(O) = 0.
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Theorem (Continued...)

Further, for t ∈ (0,T ) the following energy inequality holds in a weak sense:

d
dt

(∫
O

k M ψ̂ log ψ̂ dxdq+ 1
2‖u‖

2
2

)
+(SSSv,DDD(u))+4k

(
M ∇

√
ψ̂,∇

√
ψ̂

)
O

+4k
(

MA∇q

√
ψ̂,∇q

√
ψ̂

)
O
≤ 〈f ,u〉.
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Proof

STEP 1. Truncate ψ̂ in the Kramers expression and in the drag term in the
FP equation by replacing ψ̂ with T`(ψ̂), preserving the energy inequality.

STEP 2. We form a Galerkin approximation of the velocity and the
probability density function, resulting in a system of ODEs in t.

STEP 3. The sequence of Galerkin approximations satisfies an energy
inequality, uniformly in the number of Galerkin basis functions and the
truncation parameter `.

STEP 4. We extract weakly (and weak*) convergent subsequences, and
pass to the limits in the Galerkin approximations.

STEP 5. We require strongly convergent sequences for passage to limit in
` in the various nonlinear terms. This is the most difficult step to realize.
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weak convergence −→ strong convergence

d
dt

(∫
O

k M ψ̂
` log ψ̂

` dxdq+ 1
2‖u

`‖2
2

)
+(SSS`

v,DDD(u`))+4k
(

M ∇

√
ψ̂`,∇

√
ψ̂`

)
O

+4k
(

MA∇q

√
ψ̂`,∇q

√
ψ̂`

)
O
≤ 〈f ,u`〉.

Velocity:
strong convergence immediate by Aubin–Lions–Simon compactness theorem.

Probability density function: (much more difficult)
Idea 1: Dubinskĭı’s extension of the Aubin–Lions–Simon theorem
Idea 2:

I Vitali’s convergence theorem (a.e. convergence + L1 equi-integrability);
I Weak lower semicontinuity of convex functions (Feireisl & Novotný);
I Murat–Tartar Div–Curl lemma;
I Uniform interior estimates on Ω×D× (0,T ), obtained by function

space interpolation from the energy inequality.
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I Murat–Tartar Div–Curl lemma;
I Uniform interior estimates on Ω×D× (0,T ), obtained by function

space interpolation from the energy inequality.

17 / 20



weak convergence −→ strong convergence

d
dt

(∫
O

k M ψ̂
` log ψ̂

` dxdq+ 1
2‖u

`‖2
2

)
+(SSS`

v,DDD(u`))+4k
(

M ∇

√
ψ̂`,∇

√
ψ̂`

)
O

+4k
(

MA∇q

√
ψ̂`,∇q

√
ψ̂`

)
O
≤ 〈f ,u`〉.

Velocity:
strong convergence immediate by Aubin–Lions–Simon compactness theorem.

Probability density function: (much more difficult)
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I Murat–Tartar Div–Curl lemma;
I Uniform interior estimates on Ω×D× (0,T ), obtained by function

space interpolation from the energy inequality.

17 / 20



weak convergence −→ strong convergence

d
dt

(∫
O

k M ψ̂
` log ψ̂

` dxdq+ 1
2‖u

`‖2
2

)
+(SSS`

v,DDD(u`))+4k
(

M ∇

√
ψ̂`,∇

√
ψ̂`

)
O

+4k
(

MA∇q

√
ψ̂`,∇q

√
ψ̂`

)
O
≤ 〈f ,u`〉.

Velocity:
strong convergence immediate by Aubin–Lions–Simon compactness theorem.

Probability density function: (much more difficult)
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Idea 2:

I Vitali’s convergence theorem (a.e. convergence + L1 equi-integrability);
I Weak lower semicontinuity of convex functions (Feireisl & Novotný);
I Murat–Tartar Div–Curl lemma;

I Uniform interior estimates on Ω×D× (0,T ), obtained by function
space interpolation from the energy inequality.
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STEP 6. The sequence of truncated Kramers expressions SSS`
e converges to

SSSe strongly in Lq(0,T ;Lq(Ω)d×d) for all q ∈ [1,2).

STEP 7. The initial data are attained strongly in L2(Ω)d×L1
M(O), i.e.,

lim
t→0+
‖u(·, t)−u0(·)‖2

2 +‖ψ̂(·, t)− ψ̂0(·)‖L1
M(O) = 0.

STEP 8. Identification of SSSv: noting the strong convergence of SSS`
e and u`,

we use the method of parabolic Lipschitz-truncation
(Diening, Ružička & Wolf (2010)), and

Chacon’s biting lemma

to finally deduce that

(SSSv,DDD(u)) ∈ A for a.e. (x, t) ∈ Q.

Buĺıček, Gwiazda, Málek & Świerczewska-Gwiazda:
SIAM J. Math. Anal. (Accepted). Preprint of NCMM, no. 2011-008, 2011.
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SIAM J. Math. Anal. (Accepted). Preprint of NCMM, no. 2011-008, 2011.

18 / 20



Summary

We have established long-time large-data existence of weak solutions to
a general class of kinetic models of homogeneous incompressible dilute
polymers, the main new feature of the model being the presence of a
general implicit constitutive equation relating the viscous part SSSv of the
Cauchy stress and the symmetric part DDD of the velocity gradient.

The elastic properties of the flow, characterizing the response of polymer
macromolecules in the viscous solvent, have been modelled by the elastic
part SSSe of the Cauchy stress tensor, which is defined by the Kramers
expression involving the probability density function, associated with the
random motion of the polymer molecules in the solvent.

The probability density function satisfies a Fokker–Planck equation, which
is nonlinearly coupled to the momentum equation.
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Possible extensions

A possible extension of the analysis presented here would be to admit a
nonhomoheneous solvent, with variable density.

For a coupled Navier–Stokes–Fokker–Planck system with variable density
and density-dependent dynamic viscosity and drag coefficients the
existence of global weak solutions was shown by

Barrett & Süli (2012).

The main theoretical hurdle in extending the results of Barrett & Süli
(2012) to nonhomogeneous fluid flow models where instead of a linear
relationship between SSSv and DDD these quantities are related through an
implicit relationship is that the parabolic Lipschitz-truncation method of

Diening, Ružička & Wolf (2010), and

Buĺıček, Gwiazda, Málek & Świerczewska-Gwiazda (2011)

is not (yet) available for such models.
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