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Balance laws, Navier–Stokes fluid, non-Newtonian fluids

Physical laws:

ρ
dv

dt
= divT+ ρb

div v = 0

T = T⊤

Material properties:
T = T(v,∇v, . . . )

Navier–Stokes fluid:
T = −pI+ 2µD

Non-newtonian fluids:

T 6= −pI+ 2µD



(a) Weissenberg effect. (b) Barus effect.

Figure: Some non-newtonian effects.

Non-newtonian fluids: molten chocolate, polymer melts, ball point
pen ink, aqueous limestone suspension, toothpaste, mineral oils,
paints, mango jam, asphalt binder, blood



“Shear rate” dependent viscosity, µ = µ(D)

T = −pI+ 2µ(D)D

µ(D) = µ∞ +
µ0 − µ∞

(1 + α |D|2)
n
2

µ(D) = µ∞ + (µ0 − µ∞) (1 + α |D|a)
n−1
a

Pierre J. Carreau. Rheological equations from molecular network theories. J.

Rheol., 16(1):99–127, 1972

Kenji Yasuda. Investigation of the analogies between viscometric and linear

viscoelastic properties of polystyrene fluids. PhD thesis, Massachusetts Institute

of Technology. Dept. of Chemical Engineering., 1979



Differential type models

T = −pI+ f(A1,A2,A3, . . . )

A1 =def 2D

An =def

dAn−1

dt
+ An−1L+ L⊤An−1

R. S. Rivlin and J. L. Ericksen. Stress-deformation relations for isotropic

materials. J. Ration. Mech. Anal., 4:323–425, 1955:



Incompressible simple fluid

T = −pI+ 2µ(D)D

T = −pI+ f(A1,A2,A3, . . . )

General constitutive relation:

T = −pI+ F+∞
s=0(Ct (t − s))

C. Truesdell and W. Noll. The non-linear field theories of mechanics. In

S. Flüge, editor, Handbuch der Physik, volume III/3. Springer,

Berlin-Heidelberg-New York, 1965



Rate type models

T = −πI+ S

J. G. Oldroyd. Non-newtonian effects in steady motion of some idealized

elastico-viscous liquids. Proc. R. Soc. A-Math. Phys. Eng. Sci.,

245(1241):278–297, 1958:

S+ λ1

▽

S+
λ3

2
(DS+ SD) +

λ5

2
(Tr S)D+

λ6

2
(S ·D) I

= −µ

(

D+ λ2

▽

D+ λ4D
2 +

λ7

2
(D ·D) I

)

▽

b =def

db

dt
− [∇v]b− b [∇v]⊤



Pressure dependent viscosity, µ = µ(p)

T = −pI+ 2µ(p)D

µ(p) = µ0e
αp

P. W. Bridgman. The effect of pressure on the viscosity of forty-four pure

liquids. Proc. Am. Acad. Art. Sci., 61(3/12):57–99, FEB-NOV 1926



Stress dependent viscosity, µ = µ(T)

Gilbert R. Seely. Non-newtonian viscosity of polybutadiene solutions. AIChE J.,

10(1):56–60, 1964:

µ(T) = µ∞ + (µ0 − µ∞) e
−
|Tδ|
τ0

H Blatter. Velocity and stress-fields in grounded glaciers – a simple algorithm

for including deviatoric stress gradients. J. Glaciol., 41(138):333–344, 1995:

µ(T) =
A

(

|Tδ|
2 + τ20

)
n−1
2

Seikichi Matsuhisa and R. Byron Bird. Analytical and numerical solutions for

laminar flow of the non-Newtonian Ellis fluid. AIChE J., 11(4):588–595, 1965:

µ(T) =
µ0

1 + α |Tδ|
n−1



Implicit relation between T and D
Constitutive relations have the form

T = −pI+ 2µ(D)D

T = −pI+ 2µ(T)D

or

T = −pI+ S

f(S,
▽

S, . . . ,D,
▽

D, . . . ) = 0

Incompressibility:
TrT = −3p

General constitutive relation:

T = −pI+ F+∞
s=0(Ct (t − s))



Implicit constitutive relations

Relations of type

f (T,D) = 0

or

H+∞
s=0 (T(t − s),Ct (t − s)) = 0

allow one to bring under one unifying theme a much richer and
wider class of material response.

A. J. A. Morgan. Some properties of media defined by constitutive equations in

implicit form. Int. J. Eng. Sci., 4(2):155–178, 1966

K. R. Rajagopal. On implicit constitutive theories. Appl. Math., Praha,

48(4):279–319, 2003

K. R. Rajagopal. On implicit constitutive theories for fluids. J. Fluid Mech.,

550:243–249, 2006



Stress power law models

Classical power-law fluids:

T = −pI+ 2µ0

(

1 + |D|2
)m

D

Stress power-law fluids:

D = α
(

1 + β |Tδ|
2
)n

Tδ

J. Málek, V. P., and K. R. Rajagopal. Generalizations of the Navier–Stokes

fluid from a new perspective. Int. J. Eng. Sci., 48(12):1907–1924, 2010



Qualitative behaviour

nonmonotone
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(a) Classical power-law
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(b) Stress power law model.

Figure: Comparison of stress power-law model and the classical power
law model.



Analytical solutions – Hagen–Poiseuille flow
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(b) Analytical solution.

Figure: Hagen–Poiseuille flow.

v ẑ(r) = −
1

2R(n + 1)

(

(

1 + 2Rr2
)n+1

− (1 + 2R)n+1
)

.



Fully implicit models

Algebraic type relations:

f (T,D) = 0

General relation for isotropic tensor function of T and D:

α0I+ α1T+ α2D+ α3T
2 + α4D

2 + α5 (TD+DT)

+α6

(

T2D+DT2
)

+α7

(

TD2 +D2T
)

+α8

(

T2D2 +D2T2
)

= 0,

αi = αi

(

TrD,TrT,TrD2,TrT2,TrT3,TrD2,

Tr (TD) ,Tr
(

T2D
)

,Tr
(

TD2
)

,Tr
(

T2D2
))



Fading memory

Explicit formula for Cauchy stress:

T = −pI+ F+∞
s=0(Ct (t − s))

Bernard D. Coleman and Walter Noll. An approximation theorem for

functionals, with applications in continuum mechanics. Arch. Ration. Mech.

Anal., 6:355–370, 1960

Implicit relation between the histories:

H+∞
s=0 (T(t − s),Ct (t − s)) = 0

V. P. and K. R. Rajagopal. On implicit constitutive relations for materials with

fading memory. J. Non-Newton. Fluid Mech., 2012. Accepted for publication



Rate type models

T = −πI+ S

J. G. Oldroyd. Non-newtonian effects in steady motion of some idealized

elastico-viscous liquids. Proc. R. Soc. A-Math. Phys. Eng. Sci.,

245(1241):278–297, 1958:

S+ λ1

▽

S+
λ3

2
(DS+ SD) +

λ5

2
(Tr S)D+

λ6

2
(S ·D) I

= −µ

(

D+ λ2

▽

D+ λ4D
2 +

λ7

2
(D ·D) I

)

▽

b =def

db

dt
− [∇v]b− b [∇v]⊤



Thermodynamics
Is it possible to develop a thermodynamical framework for these
models?

Yes, but the classical Coleman–Noll procedure is not very useful.
Bernard D. Coleman. Thermodynamics of materials with memory. Arch.

Ration. Mech. Anal., 17:1–46, 1964

Bernard D. Coleman and Walter Noll. The thermodynamics of elastic materials

with heat conduction and viscosity. Arch. Ration. Mech. Anal., 13:167–178,

1963

It is better to use the framework based on the maximization of the
rate of entropy production.
Hans Ziegler. Some extremum principles in irreversible thermodynamics with

application to continuum mechanics. In Progress in Solid Mechanics, Vol. IV,

pages 91–193. North-Holland, Amsterdam, 1963

K. R. Rajagopal and A. R. Srinivasa. On thermomechanical restrictions of

continua. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.,

460(2042):631–651, 2004



Entropy

Balance equation for entropy:

ρ
dη

dt
= div

(q

θ

)

+
ζ

θ

ζ = T ·D− q · ∇θ

Second law of thermodynamics:

ζ ≥ 0



Coleman–Noll

Guess:
T =def f(D)

Show that:
T ·D = f (D) ·D ≥ 0



Maximization of the rate of entropy production

Guess:
ζ =def ζ̂ (T,D) ≥ 0

◮ Find T such that T maximizes ζ subject to ζ −T ·D = 0 as a
constraint.

◮ If necessary, apply other constraints as well. (For example
incompressibility TrD = 0.)

◮ The condition for maximum is the constitutive relation,
T = T(D).

Role of T and D can be changed.



Thermodynamically consistent model

Choose a constitutive relation the for rate of dissipation:

ζ = f
(

TrD,TrT,TrD2,TrT2,TrT3,TrD3,

TrTD,TrT2D,TrTD2,TrT2D2
)

≥ 0

One can think about

ζ = (TrT)2 +TrD2 +TrT2 +
(

TrT3
)2

+
(

TrD3
)2

+ (Tr (TD))2

+
(

Tr
(

T2D
))2

+
(

Tr
(

TD2
))2

+ Tr
(

T2D2
)



Thermodynamically consistent model

Guess:

ζ = 2µD ·D+ 2α

(

T ·D2
)2

D ·D
≥ 0

Result:

Tδ = 2µ

(

1−
α

µ

(

T ·D2
)2

(D ·D)2

)

D+2α
T ·D2

D ·D

(

TD+DT−
2

3
(T ·D) I

)



Summary

Implicit constitutive relations

Relations of type

f (T,D) = 0

or

H+∞
s=0 (T(t − s),Ct (t − s)) = 0

allow one to bring under one unifying theme a much richer and
wider class of material response.

Why

Old models are seen form different perspective and new
thermodynamically consistent models can be easy developed.



Problems

Physical laws:

ρ
dv

dt
= divT+ ρb

div v = 0

T = T⊤

Material properties:

f (T,D) = 0

or

H+∞
s=0 (T(t − s),Ct (t − s)) = 0

Mathematical problems: existence and uniqueness of the solution,
qualitative properties of the solution, stability, numerical methods


