On the analysis of unsteady flows of implicitly constituted incompressible fluids

Miroslav Bulíček

Mathematical Institute of the Charles University Sokolovská 83, 18675 Prague 8, Czech Republic
P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda

Kraków July 3, 2012

Balance equations

We consider flow of a homogeneous incompressible fluid under constant temperature

$$
\operatorname{div} v=0
$$

$$
v_{, t}+\operatorname{div}(v \otimes v)-\operatorname{div} \mathbf{S}=-\nabla p+f
$$

$$
\mathrm{S}=\mathbf{S}^{T}
$$

- v is the velocity of the fluid
- p is the pressure
- f external body forces ($\equiv \mathbf{0}$)
- S is the constitutively determined part of the Cauchy stress The Cauchy stress is given as $\mathbf{T}=-p \mathbf{l}+\mathbf{S}$

Point-wisely given constitutive equations

- We denote by $\mathbf{D}(v)$ the symmetric part of the velocity gradient, i.e., $2 \mathbf{D}(v):=\nabla v+(\nabla v)^{T}$.
- We assume for simplicity only point-wise relation between \mathbf{D} and S .
- We add to balance equations some implicit (constitutive) formula
\square
- In what follows we consider only:

Point-wisely given constitutive equations

- We denote by $\mathbf{D}(v)$ the symmetric part of the velocity gradient, i.e., $2 \mathbf{D}(v):=\nabla v+(\nabla v)^{T}$.
- We assume for simplicity only point-wise relation between D and S.
- We add to balance equations some implicit (constitutive) formula:
$\mathbf{F}(\mathbf{S}, \mathbf{D}, p, x, t$, temperature, concentration, etc. $)=\mathbf{0}$.
- In what follows we consider only:

Point-wisely given constitutive equations

- We denote by $\mathbf{D}(v)$ the symmetric part of the velocity gradient, i.e., $2 \mathbf{D}(v):=\nabla v+(\nabla v)^{T}$.
- We assume for simplicity only point-wise relation between D and S.
- We add to balance equations some implicit (constitutive) formula:

$$
\mathbf{F}(\mathbf{S}, \mathbf{D}, p, x, t, \text { temperature, concentration, etc. })=\mathbf{0} .
$$

- In what follows we consider only:

$$
F(S, D)=0
$$

Explicit constitutive equations

Nice "continuous" explicit models (S := S(D))

- Newtonian fluid

$$
\mathbf{S}=\nu_{0} \mathbf{D}, \quad \nu_{0}>0,
$$

- Ladyzhenskaya (power-law like fluid)

$$
\mathbf{S}=\nu_{0}\left(\nu_{1}+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}, \quad r>1, \quad \nu_{1} \geq 0
$$

Nice "continuous" explicit models $(\mathrm{D}:=\mathrm{D}(\mathrm{S})$)

- Newtonian fluid

- Inverse-like Ladyzhenskaya (power-law like fluid)

Explicit constitutive equations

Nice "continuous" explicit models (S := S(D))

- Newtonian fluid

$$
\mathbf{S}=\nu_{0} \mathbf{D}, \quad \nu_{0}>0,
$$

- Ladyzhenskaya (power-law like fluid)

$$
\mathbf{S}=\nu_{0}\left(\nu_{1}+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}, \quad r>1, \quad \nu_{1} \geq 0
$$

Nice "continuous" explicit models ($\mathbf{D}:=\mathbf{D}(\mathbf{S})$)

- Newtonian fluid

$$
\mathbf{D}=\nu_{0}^{*} \mathbf{S}, \quad \nu_{0}^{*}>0,
$$

- Inverse-like Ladyzhenskaya (power-law like fluid)

$$
\mathbf{D}=\nu_{0}^{*}\left(\nu_{1}^{*}+|\mathbf{S}|^{2}\right)^{\frac{r^{*}-2}{2}} \mathbf{S}, \quad r^{*}>1, \quad \nu_{1} \geq 0
$$

Explicit constitutive equations

"Discontinuous" explicit models

- Perfect plastic

$$
\begin{aligned}
& |\mathbf{D}|=0 \Longrightarrow|\mathbf{S}| \leq 1 \\
& |\mathbf{D}|>0 \Longrightarrow \mathbf{S}:=\frac{\mathbf{D}}{|\mathbf{D}|}
\end{aligned}
$$

- Bingham (Herschley-Bulkley fluid)

$$
\begin{aligned}
& |\mathbf{D}|=0 \Longrightarrow|\mathbf{S}| \leq \nu_{0} \\
& |\mathbf{D}|>0 \Longrightarrow \mathbf{S}:=\frac{\nu_{0} \mathbf{D}}{|\mathbf{D}|}+\nu(|\mathbf{D}|) \mathbf{D}
\end{aligned}
$$

- Fluids with activation criteria

$$
\mathbf{S}=\nu(|\mathbf{D}|) \mathbf{D}
$$

with ν being discontinuous at some d^{*}-the activation criterium

Implicit-like constitutive equations

Still nice continuous explicit formula

- Bingham fluid

$$
\mathbf{D}=\frac{\left(|\mathbf{S}|-\nu_{0}\right)_{+}}{\nu_{1}|\mathbf{S}|} \mathbf{S}
$$

Only fully implicit continuous choice

- Perfect plastic

Implicit-like constitutive equations

Still nice continuous explicit formula

- Bingham fluid

$$
\mathbf{D}=\frac{\left(|\mathbf{S}|-\nu_{0}\right)_{+}}{\nu_{1}|\mathbf{S}|} \mathbf{S}
$$

Only fully implicit continuous choice

- Perfect plastic

$$
||\mathbf{D}| \mathbf{S}-\mathbf{D}|+(|\mathbf{S}|-1)_{+}=0
$$

Implicit formulation - maximal (monotone) graph setting

Implicit theory allows to get more models. Principle of objectivity and material isotropy imply that

- Explicit relation $S=S(D)$ - the only form

$$
\mathbf{S}=\alpha_{0} \mathbf{I}+\alpha_{1} \mathbf{D}+\alpha_{2} \mathbf{D}^{2}
$$

with α 's dependent on invariants

- Implicit relation $\mathbf{F}(\mathbf{S}, \mathbf{D})$ - the only form

$$
0=\alpha_{0} \mathbf{I}+\alpha_{1} \mathbf{D}+\alpha_{2} \mathbf{D}^{2}+\alpha_{3} \mathbf{S}+\alpha_{4} \mathbf{S}^{2}+\alpha_{5}(\mathbf{D S}+\mathbf{S D})+\ldots
$$

with α 's dependent on invariants

Implicit formulation - maximal (monotone) graph setting

Implicit function \mathbf{F} determines a graph $\mathcal{A} \subset \mathbb{R}_{\text {sym }}^{d \times d} \times \mathbb{R}_{\text {sym }}^{d \times d}$ (or $\mathcal{A}(t, x)$). We assume that the graph is the ψ-maximal monotone graph:

- $(\mathbf{0}, \mathbf{0}) \in \mathcal{A}$
- Monotonicity: For any $\left(\mathbf{S}_{1}, \mathrm{D}_{1}\right),\left(\mathrm{S}_{2}, \mathrm{D}_{2}\right) \in \mathcal{A}$

No strict monotonicity is needed!

- Maximal graph: If for some (S, D) there holds

then
- If \mathcal{A} is (t, x)-dependent some measurability w.r.t. (t, x)
- ψ and ψ^{*} coercivity: For any $(\mathbf{S}, \mathrm{D}) \in \mathcal{A}(t, x)$

Implicit formulation - maximal (monotone) graph setting

Implicit function \mathbf{F} determines a graph $\mathcal{A} \subset \mathbb{R}_{\text {sym }}^{d \times d} \times \mathbb{R}_{\text {sym }}^{d \times d}$ (or $\mathcal{A}(t, x)$). We assume that the graph is the ψ-maximal monotone graph:

- $(\mathbf{0}, \mathbf{0}) \in \mathcal{A}$
- Monotonicity: For any $\left(\mathbf{S}_{1}, \mathbf{D}_{1}\right),\left(\mathbf{S}_{2}, \mathbf{D}_{2}\right) \in \mathcal{A}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right):\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right) \geq 0
$$

No strict monotonicity is needed!

- Maximal graph: If for some (S, D) there holds

then
- If \mathcal{A} is (t, x)-dependent some measurability w.r.t. (t, x)
\square

Implicit formulation - maximal (monotone) graph setting

 Implicit function \mathbf{F} determines a graph $\mathcal{A} \subset \mathbb{R}_{\text {sym }}^{d \times d} \times \mathbb{R}_{\text {sym }}^{d \times d}$ (or $\mathcal{A}(t, x)$). We assume that the graph is the ψ-maximal monotone graph:- $(\mathbf{0}, \mathbf{0}) \in \mathcal{A}$
- Monotonicity: For any $\left(\mathbf{S}_{1}, \mathbf{D}_{1}\right),\left(\mathbf{S}_{2}, \mathbf{D}_{2}\right) \in \mathcal{A}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right):\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right) \geq 0
$$

No strict monotonicity is needed!

- Maximal graph: If for some (S, D) there holds

$$
(\mathbf{S}-\tilde{\mathbf{S}}):(\mathbf{D}-\tilde{\mathbf{D}}) \geq 0 \quad \forall(\tilde{\mathbf{S}}, \tilde{\mathbf{D}}) \in \mathcal{A}
$$

then

$$
(\mathbf{S}, \mathbf{D}) \in \mathcal{A}
$$

- If \mathcal{A} is (t, x)-dependent some measurability w.r.t. (t, x)
\square

Implicit formulation - maximal (monotone) graph setting

 Implicit function \mathbf{F} determines a graph $\mathcal{A} \subset \mathbb{R}_{\text {sym }}^{d \times d} \times \mathbb{R}_{\text {sym }}^{d \times d}$ (or $\mathcal{A}(t, x)$). We assume that the graph is the ψ-maximal monotone graph:- $(\mathbf{0}, \mathbf{0}) \in \mathcal{A}$
- Monotonicity: For any $\left(\mathbf{S}_{1}, \mathbf{D}_{1}\right),\left(\mathbf{S}_{2}, \mathbf{D}_{2}\right) \in \mathcal{A}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right):\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right) \geq 0
$$

No strict monotonicity is needed!

- Maximal graph: If for some (S, D) there holds

$$
(\mathbf{S}-\tilde{\mathbf{S}}):(\mathbf{D}-\tilde{\mathbf{D}}) \geq 0 \quad \forall(\tilde{\mathbf{S}}, \tilde{\mathbf{D}}) \in \mathcal{A}
$$

then

$$
(\mathbf{S}, \mathbf{D}) \in \mathcal{A}
$$

- If \mathcal{A} is (t, x)-dependent some measurability w.r.t. (t, x)
- ψ and ψ^{*} coercivity: For any $(S, D) \in \mathcal{A}(t, x)$

Implicit formulation - maximal (monotone) graph setting

 Implicit function \mathbf{F} determines a graph $\mathcal{A} \subset \mathbb{R}_{\text {sym }}^{d \times d} \times \mathbb{R}_{\text {sym }}^{d \times d}($ or $\mathcal{A}(t, x))$. We assume that the graph is the ψ-maximal monotone graph:- $(\mathbf{0}, \mathbf{0}) \in \mathcal{A}$
- Monotonicity: For any $\left(\mathbf{S}_{1}, \mathbf{D}_{1}\right),\left(\mathbf{S}_{2}, \mathbf{D}_{2}\right) \in \mathcal{A}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right):\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right) \geq 0
$$

No strict monotonicity is needed!

- Maximal graph: If for some (S, D) there holds

$$
(\mathbf{S}-\tilde{\mathbf{S}}):(\mathbf{D}-\tilde{\mathbf{D}}) \geq 0 \quad \forall(\tilde{\mathbf{S}}, \tilde{\mathbf{D}}) \in \mathcal{A}
$$

then

$$
(\mathbf{S}, \mathbf{D}) \in \mathcal{A}
$$

- If \mathcal{A} is (t, x)-dependent some measurability w.r.t. (t, x)
- ψ and ψ^{*} coercivity: For any $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}(t, x)$

$$
\begin{equation*}
\mathbf{S}: \mathbf{D} \geq \alpha\left(\psi(\mathbf{D})+\psi^{*}(\mathbf{S})\right)-g(t, x) \tag{En}
\end{equation*}
$$

with $\alpha \in(0,1]$ and $g \in L^{1}$.

What is ψ ? Excursion to Orlicz setting

Assume that $\psi: \mathbb{R}_{\text {sym }}^{d \times d} \rightarrow \mathbb{R}$ is an N - function (if it depends only on the modulus then Young function), i.e.,

- ψ is convex and continuous
- $\psi(\mathbf{D})=\psi(-\mathbf{D})$

$$
\lim _{|\mathbf{D}| \rightarrow 0_{+}} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=0, \quad \lim _{|\mathbf{D}| \rightarrow \infty} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=\infty
$$

We define the conjugate function ψ^{*} as

What is ψ ? Excursion to Orlicz setting

Assume that $\psi: \mathbb{R}_{\text {sym }}^{d \times d} \rightarrow \mathbb{R}$ is an N - function (if it depends only on the modulus then Young function), i.e.,

- ψ is convex and continuous
- $\psi(\mathbf{D})=\psi(-\mathbf{D})$

$$
\lim _{|\mathbf{D}| \rightarrow 0_{+}} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=0, \quad \lim _{|\mathbf{D}| \rightarrow \infty} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=\infty
$$

We define the conjugate function ψ^{*} as

$$
\psi^{*}(\mathbf{S}):=\max _{\mathbf{D}}(\mathbf{S}: \mathbf{D}-\psi(\mathbf{D}))
$$

What is ψ ? Excursion to Orlicz setting

- Young inequality:

$$
\mathbf{S}: \mathbf{D} \leq \psi(\mathbf{D})+\psi^{*}(\mathbf{S})
$$

- Orlicz spaces: The Orlicz space $L^{\psi}(\mathcal{O})^{d \times d}$ is the set of all measurable function $\mathrm{D}: \Omega \rightarrow \mathbb{R}_{\text {sym }}^{d \times d}$ such that

$$
\lim _{\lambda \rightarrow \infty} \int_{\mathcal{O}} \psi\left(\lambda^{-1} \mathbf{D}\right)=0
$$

with the norm

$$
\|\mathbf{D}\|_{L^{\psi}}:=\inf \left\{\lambda ; \int_{\mathcal{O}} \psi\left(\lambda^{-1} \mathbf{D}\right) \leq 1\right\}
$$

- Δ_{2} condition

$$
\psi(2 \mathbf{D}) \leq C_{1} \psi(\mathbf{D})+C_{2}
$$

Optimality of ψ and ψ^{*} - more general models

- Non-polynomial growth

$$
\mathbf{S} \sim\left(1+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \ln (1+|\mathbf{D}|) \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim|\mathbf{D}|^{r} \ln (1+|\mathbf{D}|)
$$

- Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$

$$
c_{1}|\mathbf{D}|^{r}-c_{2} \leq \psi(|\mathbf{D}|) \leq c_{3}|\mathbf{D}|^{q}+c_{4}
$$

Optimality of ψ and ψ^{*} - more general models

- Non-polynomial growth

$$
\mathbf{S} \sim\left(1+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \ln (1+|\mathbf{D}|) \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim|\mathbf{D}|^{r} \ln (1+|\mathbf{D}|)
$$

- Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$

$$
c_{1}|\mathbf{D}|^{r}-c_{2} \leq \psi(|\mathbf{D}|) \leq c_{3}|\mathbf{D}|^{q}+c_{4}
$$

What is the goal?

- Goal $=$ existence result for as general constitutive relationship as possible
- A priori $=$ energy estimates (Ω bounded and sufficiently smooth, boundary conditions allowing to get the estimates)
- Steady case

- Unsteady case

What is the goal?

- Goal $=$ existence result for as general constitutive relationship as possible
- A priori $=$ energy estimates (Ω bounded and sufficiently smooth, boundary conditions allowing to get the estimates)
- Steady case

$$
\int_{\Omega} \psi(\mathbf{D})+\psi^{*}(\mathbf{S}) d x \leq \mathbf{C}
$$

- Unsteady case

$$
\sup _{t}\|v\|_{2}^{2}+\int_{0}^{T} \int_{\Omega} \psi(\mathbf{D})+\psi^{*}(\mathbf{S}) d x d t \leq C
$$

How to get the goal

- Energy equality "holds" \Longrightarrow simpler proof, i.e., if

$$
\int(v \otimes v): \mathbf{D}(v) \quad \text { is meaningful }
$$

- More difficult case, i.e.,

energy space is compactly embedded into L^{2}

How to get the goal

- Energy equality "holds" \Longrightarrow simpler proof, i.e., if

$$
\int(v \otimes v): \mathbf{D}(v) \quad \text { is meaningful }
$$

- More difficult case, i.e.,

$$
\text { energy space is compactly embedded into } L^{2}
$$

The key result

Theorem (Easier case; Gwiazda, Świerczewska-Gwiazda et al) If energy equality "holds" and ψ^{*} satisfies Δ_{2} conditions then there exists a weak solution for any relevant boundary conditions.

- The same result also holds for Dirichlet bc. by using the Wolf decomposition of the pressure.

The key result

Theorem (Easier case; Gwiazda, Świerczewska-Gwiazda et al)
If energy equality "holds" and ψ^{*} satisfies Δ_{2} conditions then there exists a weak solution for any relevant boundary conditions.

Theorem (Difficult case; Bulíček, Gwiazda, Málek and Świerczewska-Gwiazda)

Let $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$ and ψ and ψ^{*} satisfy Δ_{2} condition. Assume that energy space is compactly embedded into L^{2}. Then there exists a weak solution for Navier's bc.

- The same result also holds for Dirichlet bc. by using the Wolf decomposition of the pressure.

The key result

Theorem (Easier case; Gwiazda, Świerczewska-Gwiazda et al) If energy equality "holds" and ψ^{*} satisfies Δ_{2} conditions then there exists a weak solution for any relevant boundary conditions.

Theorem (Difficult case; Bulíček, Gwiazda, Málek and Świerczewska-Gwiazda)
Let $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$ and ψ and ψ^{*} satisfy Δ_{2} condition. Assume that energy space is compactly embedded into L^{2}. Then there exists a weak solution for Navier's bc.

- The same result also holds for Dirichlet bc. by using the Wolf decomposition of the pressure.

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ^{*} satisfying Δ_{2} condition, we have

$$
\int_{\Omega} \psi\left(\left|\nabla^{2} u\right|\right) \leq C\left(1+\int_{\Omega} \psi(|f|)\right)
$$

for any u solving homogeneous Neuman problem with right hand side f.

Byproduct
Improvement of the Minty method \Rightarrow no use of the Vitali theorem \Rightarrow no strict
monotonicity required

Byproduct
Improvement of the Lipschitz approximation method \Rightarrow no need of Δ_{2} for $\psi \Rightarrow$
nothing to our case due to the pressure \Rightarrow but may be use for general
parabolic/elliptic problems

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ^{*} satisfying Δ_{2} condition, we have

$$
\int_{\Omega} \psi\left(\left|\nabla^{2} u\right|\right) \leq C\left(1+\int_{\Omega} \psi(|f|)\right)
$$

for any u solving homogeneous Neuman problem with right hand side f.

Byproduct

 Improvement of the Minty method \Rightarrow no use of the Vitali theorem \Rightarrow no strictByproduct
Improvement of the Lipschitz approximation method \Rightarrow no need of Δ_{2} for $\psi \Rightarrow$
nothing to our case due to the pressure \Rightarrow but may be use for general
parabolic/elliptic problems

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ^{*} satisfying Δ_{2} condition, we have

$$
\int_{\Omega} \psi\left(\left|\nabla^{2} u\right|\right) \leq C\left(1+\int_{\Omega} \psi(|f|)\right)
$$

for any u solving homogeneous Neuman problem with right hand side f.

Byproduct

Improvement of the Minty method \Longrightarrow no use of the Vitali theorem

Byproduct
Improvement of the Lipschitz approximation method \Rightarrow no need of Δ_{2} for $\psi \Rightarrow$
nothing to our case due to the pressure \Rightarrow but may be use for general
parabolic/elliptic problems

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ^{*} satisfying Δ_{2} condition, we have

$$
\int_{\Omega} \psi\left(\left|\nabla^{2} u\right|\right) \leq C\left(1+\int_{\Omega} \psi(|f|)\right)
$$

for any u solving homogeneous Neuman problem with right hand side f.

```
Byproduct
Improvement of the Minty method }\Longrightarrow\mathrm{ no use of the Vitali theorem }\Longrightarrow\mathrm{ no strict monotonicity required
```

Byproduct
Improvement of the Lipschitz approximation method \Rightarrow no need of Δ_{2} for $\psi \Rightarrow$
nothing to our case due to the pressure \Rightarrow but may be use for general
parabolic/elliptic problems

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ^{*} satisfying Δ_{2} condition, we have

$$
\int_{\Omega} \psi\left(\left|\nabla^{2} u\right|\right) \leq C\left(1+\int_{\Omega} \psi(|f|)\right)
$$

for any u solving homogeneous Neuman problem with right hand side f.

```
Byproduct
Improvement of the Minty method }\Longrightarrow\mathrm{ no use of the Vitali theorem }\Longrightarrow\mathrm{ no strict monotonicity required
```


Byproduct

Improvement of the Lipschitz approximation method

$$
\Longrightarrow \text { no need of } \Delta_{2} \text { for } \psi \Longrightarrow
$$

\square

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ^{*} satisfying Δ_{2} condition, we have

$$
\int_{\Omega} \psi\left(\left|\nabla^{2} u\right|\right) \leq C\left(1+\int_{\Omega} \psi(|f|)\right)
$$

for any u solving homogeneous Neuman problem with right hand side f.

```
Byproduct
Improvement of the Minty method }\Longrightarrow\mathrm{ no use of the Vitali theorem }\Longrightarrow\mathrm{ no strict monotonicity required
```


Byproduct

Improvement of the Lipschitz approximation method \Longrightarrow no need of Δ_{2} for ψ nothing to our case due to the pressure \Rightarrow but may be use for general
parabolic/elliptic problems

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ^{*} satisfying Δ_{2} condition, we have

$$
\int_{\Omega} \psi\left(\left|\nabla^{2} u\right|\right) \leq C\left(1+\int_{\Omega} \psi(|f|)\right)
$$

for any u solving homogeneous Neuman problem with right hand side f.

Byproduct

Improvement of the Minty method \Longrightarrow no use of the Vitali theorem \Longrightarrow no strict monotonicity required

Byproduct

Improvement of the Lipschitz approximation method \Longrightarrow no need of Δ_{2} for $\psi \Longrightarrow$ nothing to our case due to the pressure \Longrightarrow but may be use for general parabolic/elliptic problems

Power-law like fluid - Explicit

Compact embedding is available if $r>\frac{6}{5}$

- $r=2$ Lerray (1934)
- $r \geq \frac{11}{5}$ for unsteady, $r \geq \frac{9}{5}$ steady; Ladyzhenskaya 60's
- $r \geq \frac{9}{5}$ unsteady; Málek. Nečas, Růžička 90's
- $r \geq \frac{8}{5}$ unsteady; Frehse, Málek, Steinahuer (2000)
- $r>\frac{6}{5}$ steady; Frehse, Málek, Steinahuer (2002)
- $r>\frac{6}{5}$ unsteady; Diening, Růžička, Wolf (2009)

Power-law like fluid - implicit (discontinuous)

- $r \geq \frac{11}{5}$ - strict monotonicity - Gwiazda, Málek, Świerczewska (2007)
- $r>\frac{9}{5}$ - Herschel-Bulkley model - Málek, Růžička, Shelukhin(2005)
- $r>\frac{6}{5}$ steady - strict monotonicity - Bulíček, Gwiazda, Málek, Świerczewska (2009)
- $r>\frac{6}{5}$ unsteady; Bulíček, Gwiazda, Málek, Świerczewska (2010)

Novelties

- Fully Orlicz setting
- Fully implicit setting

Novelties

- Fully Orlicz setting
- Fully implicit setting

Methods

- subcritical case - energy equality; Minty method small problems if ψ does not satisfy Δ_{2} condition
- supercritical case -Lipschitz approximation in Orlicz spaces; generalized Minty method

Methods

- subcritical case - energy equality; Minty method small problems if ψ does not satisfy Δ_{2} condition
- supercritical case -Lipschitz approximation in Orlicz spaces; generalized Minty method

Lipschitz approximation

- sequence of solutions $v^{n} ; v^{n}-v$ is not possible test function
- introduce a Lipschitz function $\left(v^{n}-v\right)_{\lambda}$ that is "closed" to to original
- previous work are based on the continuity of the Hardy-Littelwood maximal function in $L^{P_{-}}$In Orlicz space setting one needs that Δ_{2} conditions are satisfied and log continuity w.r.t. x
- Goal is to avoid use continuity of Hardy-Littelwood maximal function; enough is just weak $(1,1)$ estimates

Lipschitz approximation

- sequence of solutions $v^{n} ; v^{n}-v$ is not possible test function
- introduce a Lipschitz function $\left(v^{n}-v\right)_{\lambda}$ that is "closed" to to original
- previous work are based on the continuity of the Hardy-Littelwood maximal function in $L^{P_{-}} \operatorname{In}$ Orlicz space setting one needs that Δ_{2} conditions are satisfied and log continuity w.r.t. x
- Goal is to avoid use continuity of Hardy-Littelwood maximal function; enough is just weak $(1,1)$ estimates

Lipschitz approximation

- sequence of solutions $v^{n} ; v^{n}-v$ is not possible test function
- introduce a Lipschitz function $\left(v^{n}-v\right)_{\lambda}$ that is "closed" to to original
- previous work are based on the continuity of the Hardy-Littelwood maximal function in L^{p} - \ln Orlicz space setting one needs that Δ_{2} conditions are satisfied and log continuity w.r.t. x
- Goal is to avoid use continuity of Hardy-Littelwood maximal function; enough is just weak $(1,1)$ estimates

Lipschitz approximation

- sequence of solutions $v^{n} ; v^{n}-v$ is not possible test function
- introduce a Lipschitz function $\left(v^{n}-v\right)_{\lambda}$ that is "closed" to to original
- previous work are based on the continuity of the Hardy-Littelwood maximal function in $L^{p}-\ln$ Orlicz space setting one needs that Δ_{2} conditions are satisfied and log continuity w.r.t. x
- Goal is to avoid use continuity of Hardy-Littelwood maximal function; enough is just weak $(1,1)$ estimates

Lipschitz approximation

Lemma

$\left\{u^{n}\right\}_{n=1}^{\infty}$ tends strongly to $\mathbf{0}$ in L^{1} and $\left\{\mathbf{S}^{n}\right\}_{n=1}^{\infty}$ such that

$$
\int_{\Omega} \psi^{*}\left(\left|\mathbf{S}^{n}\right|\right)+\psi\left(\left|\nabla u^{n}\right|\right) d x \leq C^{*} \quad\left(C^{*}>1\right)
$$

Then for arbitrary $\lambda^{*} \in \mathbb{R}_{+}$and $k \in \mathbb{N}$ there exists $\lambda^{\max }<\infty$ and there exists sequence of $\left\{\lambda_{n}^{k}\right\}_{n=1}^{\infty}$ and the sequence u_{k}^{n} (going to zero) and open sets $E_{n}^{k}:=\left\{u_{k}^{n} \neq u^{n}\right\}$ such that $\lambda_{n}^{k} \in\left[\lambda^{*}, \lambda^{\text {max }}\right]$ and for any sequence α_{k}^{n}

$$
\begin{aligned}
u_{k}^{n} & \in W^{1, p}, \quad\left\|\mathbf{D}\left(u_{k}^{n}\right)\right\|_{\infty} \leq C \lambda_{n}^{k} \\
\left|\Omega \cap E_{n}^{k}\right| & \leq C \frac{C^{*}}{\psi\left(\lambda_{n}^{k}\right)}, \\
\int_{\Omega \cap E_{n}^{k}}\left|\mathbf{S}^{n} \cdot \mathbf{D}\left(u_{k}^{n}\right)\right| d x & \leq C C^{*}\left(\frac{\alpha_{n}^{k}}{k}+\frac{\alpha_{n}^{k} \psi\left(\lambda_{n}^{k} / \alpha_{n}^{k}\right)}{\psi\left(\lambda_{n}^{k}\right)}\right)
\end{aligned}
$$

Use of Lipschtiz approximation

- We have approximative problem $\left(v^{n}, \mathbf{S}^{n}\right)$ and weak limits $(v, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(v)) \in \mathcal{A}$
- Test the approximative n - problem by Lipschitz approximation of $v^{n}-v$, i.e.,
- One gets (here \mathbf{S} is such that $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$

- Hölder inequality gives

Use of Lipschtiz approximation

- We have approximative problem $\left(v^{n}, \mathbf{S}^{n}\right)$ and weak limits $(v, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(v)) \in \mathcal{A}$
- Test the approximative n - problem by Lipschitz approximation of $v^{n}-v$, i.e., $u_{k}^{n}:=\left(v^{n}-v\right)_{k}$
- One gets (here S is such that $(S, D) \in \mathcal{A}$

- Hölder inequality gives

Use of Lipschtiz approximation

- We have approximative problem $\left(v^{n}, \mathbf{S}^{n}\right)$ and weak limits $(v, \overline{\mathbf{S}})$, we need to show that $(\mathbf{S}, \mathbf{D}(v)) \in \mathcal{A}$
- Test the approximative n - problem by Lipschitz approximation of $v^{n}-v$, i.e., $u_{k}^{n}:=\left(v^{n}-v\right)_{k}$
- One gets (here \mathbf{S} is such that $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$

$$
\lim _{n \rightarrow \infty} \int_{u_{k}^{n}=u^{n}}\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(u_{k}^{n}\right) \leq C C^{*}\left(\frac{\alpha_{n}^{k}}{k}+\frac{\alpha_{n}^{k} \psi\left(\lambda_{n}^{k} / \alpha_{n}^{k}\right)}{\psi\left(\lambda_{n}^{k}\right)}\right)
$$

- Hölder inequality gives

Use of Lipschtiz approximation

- We have approximative problem $\left(v^{n}, \mathbf{S}^{n}\right)$ and weak limits $(v, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(v)) \in \mathcal{A}$
- Test the approximative n - problem by Lipschitz approximation of $v^{n}-v$, i.e., $u_{k}^{n}:=\left(v^{n}-v\right)_{k}$
- One gets (here \mathbf{S} is such that $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$

$$
\lim _{n \rightarrow \infty} \int_{u_{k}^{n}=u^{n}}\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(u_{k}^{n}\right) \leq C C^{*}\left(\frac{\alpha_{n}^{k}}{k}+\frac{\alpha_{n}^{k} \psi\left(\lambda_{n}^{k} / \alpha_{n}^{k}\right)}{\psi\left(\lambda_{n}^{k}\right)}\right)
$$

- Hölder inequality gives

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)\right|^{\varepsilon} \leq \int_{u^{n}=u_{k}^{n}}+\int_{u^{n} \neq u_{k}^{n}} \leq \text { small terms } \rightarrow 0
$$

Use of generalized Minty

- point-wise convergence of $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ to 0 ; strict monotonicity finishes the proof
- only monotonicity; Use Biting lemma; Since ($\mathrm{S}^{n}-\mathrm{S}$) there is sequence of non-increasing sets $A_{k+1} \subset A_{k}, \lim _{k \rightarrow \infty}\left|A_{k}\right|=0$ such that

$$
\left(S^{n}-S\right): \mathbf{D}\left(v^{n}-v\right) \text { converges weal-1y in } L^{1}\left(\Omega \backslash A_{k}\right)
$$

- point-wise \& weak implies strong in $L^{1}\left(\Omega \backslash A_{k}\right)$
- strong \& weak implies for any bounded φ

- monotonicity of the graph implies (assume that \mathcal{A} is x-independent) for any nonnegative φ, and any $\left(S_{1}, D_{1}\right) \in \mathcal{A}$ fixed matrixes

Use of generalized Minty

- point-wise convergence of $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ to 0 ; strict monotonicity finishes the proof
- only monotonicity; Use Biting lemma; Since $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ is bounded in L^{1} there is sequence of non-increasing sets $A_{k+1} \subset A_{k}, \lim _{k \rightarrow \infty}\left|A_{k}\right|=0$ such that

$$
\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right) \text { converges weakly in } L^{1}\left(\Omega \backslash A_{k}\right)
$$

- point-wise \& weak implies strong in $L^{1}\left(\Omega \backslash A_{k}\right)$
- strong \& weak implies for any bounded φ

- monotonicity of the graph implies (assume that \mathcal{A} is x-independent) for any nonnegative φ, and any $\left(S_{1}, D_{1}\right) \in \mathcal{A}$ fixed matrixes

Use of generalized Minty

- point-wise convergence of $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ to 0 ; strict monotonicity finishes the proof
- only monotonicity; Use Biting lemma; Since $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ is bounded in L^{1} there is sequence of non-increasing sets $A_{k+1} \subset A_{k}, \lim _{k \rightarrow \infty}\left|A_{k}\right|=0$ such that

$$
\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right) \text { converges weakly in } L^{1}\left(\Omega \backslash A_{k}\right)
$$

- point-wise \& weak implies strong in $L^{1}\left(\Omega \backslash A_{k}\right)$
- strong \& weak implies for any bounded φ

- monotonicity of the graph implies (assume that \mathcal{A} is x-independent) for any nonnegative φ, and any $\left(S_{1}, D_{1}\right) \in \mathcal{A}$ fixed matrixes

Use of generalized Minty

- point-wise convergence of $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ to 0 ; strict monotonicity finishes the proof
- only monotonicity; Use Biting lemma; Since $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ is bounded in L^{1} there is sequence of non-increasing sets $A_{k+1} \subset A_{k}, \lim _{k \rightarrow \infty}\left|A_{k}\right|=0$ such that

$$
\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right) \text { converges weakly in } L^{1}\left(\Omega \backslash A_{k}\right)
$$

- point-wise \& weak implies strong in $L^{1}\left(\Omega \backslash A_{k}\right)$
- strong \& weak implies for any bounded φ

$$
\lim _{n \rightarrow \infty} \int_{\Omega \backslash A_{k}} \mathbf{S}^{n}: \mathbf{D}\left(v^{n}\right) \varphi=\int_{\Omega \backslash A_{k}} \overline{\mathbf{S}}: \mathbf{D}(v) \varphi
$$

- monotonicity of the graph implies (assume that \mathcal{A} is x-independent) for any nonnegative φ, and any $\left(\mathbf{S}_{1}, \mathbf{D}_{1}\right) \in \mathcal{A}$ fixed matrixes

Use of generalized Minty

- point-wise convergence of $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ to 0 ; strict monotonicity finishes the proof
- only monotonicity; Use Biting lemma; Since $\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right)$ is bounded in L^{1} there is sequence of non-increasing sets $A_{k+1} \subset A_{k}, \lim _{k \rightarrow \infty}\left|A_{k}\right|=0$ such that

$$
\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(v^{n}-v\right) \text { converges weakly in } L^{1}\left(\Omega \backslash A_{k}\right)
$$

- point-wise \& weak implies strong in $L^{1}\left(\Omega \backslash A_{k}\right)$
- strong \& weak implies for any bounded φ

$$
\lim _{n \rightarrow \infty} \int_{\Omega \backslash A_{k}} \mathbf{S}^{n}: \mathbf{D}\left(v^{n}\right) \varphi=\int_{\Omega \backslash A_{k}} \overline{\mathbf{S}}: \mathbf{D}(v) \varphi
$$

- monotonicity of the graph implies (assume that \mathcal{A} is x-independent) for any nonnegative φ, and any $\left(\mathbf{S}_{1}, \mathbf{D}_{1}\right) \in \mathcal{A}$ fixed matrixes

$$
0 \leq \lim _{n \rightarrow \infty} \int_{\Omega \backslash A_{k}}\left(\mathbf{S}^{n}-\mathbf{S}_{1}\right):\left(\mathbf{D}\left(v^{n}\right)-\mathbf{D}_{1}\right) \varphi=\int_{\Omega \backslash A_{k}}\left(\overline{\mathbf{S}}-\mathbf{S}_{1}\right):\left(\mathbf{D}(v)-\mathbf{D}_{1}\right) \varphi
$$

Use of generalized Minty

- φ arbitrary nonnegative implies

$$
0 \leq\left(\overline{\mathbf{S}}-\mathbf{S}_{1}\right):\left(\mathbf{D}(v)-\mathbf{D}_{1}\right) \text { for a.a. } x \in \Omega \backslash A_{k}
$$

- Using maximality of the graph one gets

- Using smallness of A_{k} we get

Use of generalized Minty

- φ arbitrary nonnegative implies

$$
0 \leq\left(\overline{\mathbf{S}}-\mathbf{S}_{1}\right):\left(\mathbf{D}(v)-\mathbf{D}_{1}\right) \text { for a.a. } x \in \Omega \backslash A_{k}
$$

- Using maximality of the graph one gets

$$
(\overline{\mathbf{S}}, \mathbf{D}(v)) \in \mathcal{A} \quad \text { for a.a. } x \in \Omega \backslash A_{k}
$$

- Using smallness of A_{k} we get

Use of generalized Minty

- φ arbitrary nonnegative implies

$$
0 \leq\left(\overline{\mathbf{S}}-\mathbf{S}_{1}\right):\left(\mathbf{D}(v)-\mathbf{D}_{1}\right) \text { for a.a. } x \in \Omega \backslash A_{k}
$$

- Using maximality of the graph one gets

$$
(\overline{\mathbf{S}}, \mathbf{D}(v)) \in \mathcal{A} \quad \text { for a.a. } x \in \Omega \backslash A_{k}
$$

- Using smallness of A_{k} we get
$(\overline{\mathbf{S}}, \mathbf{D}(v)) \in \mathcal{A} \quad$ for a.a. $x \in \Omega$

Future??????

- Extension to whole N - function setting, i.e., ψ depends on whole \mathbf{D} and not only on |D|, very hard
- Extension to "real" x-dependent setting, i.e., the growth estimates depends crucially on x, i.e., for models

$$
\mathbf{S} \sim(1+|\mathbf{D}|)^{r(c(x))-2} \mathbf{D},
$$

where c satisfy convection diffusion problem.

