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Kraków July 3, 2012
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Equation

Balance equations

We consider flow of a homogeneous incompressible fluid under constant
temperature

div v = 0

v ,t + div(v ⊗ v)− divSSS = −∇p + f

SSS = SSST

• v is the velocity of the fluid
• p is the pressure
• f external body forces ( ≡ 0)
• SSS is the constitutively determined part of the Cauchy stress
The Cauchy stress is given as TTT = −pIII + SSS
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Constitutive equations

Point-wisely given constitutive equations

We denote by DDD(v) the symmetric part of the velocity gradient, i.e.,
2DDD(v) := ∇v + (∇v)T .

We assume for simplicity only point-wise relation between DDD and SSS.

We add to balance equations some implicit (constitutive) formula:

FFF(SSS,DDD, p, x , t, temperature, concentration, etc.) = 0 .

In what follows we consider only:

FFF(SSS,DDD) = 0

Buĺıček (Charles University in Prague) Implicit fluids & Analysis Kraków July 3, 2012 3 / 25



Constitutive equations

Point-wisely given constitutive equations

We denote by DDD(v) the symmetric part of the velocity gradient, i.e.,
2DDD(v) := ∇v + (∇v)T .

We assume for simplicity only point-wise relation between DDD and SSS.

We add to balance equations some implicit (constitutive) formula:

FFF(SSS,DDD, p, x , t, temperature, concentration, etc.) = 0 .

In what follows we consider only:

FFF(SSS,DDD) = 0
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Constitutive equations

Explicit constitutive equations

Nice “continuous” explicit models (SSS := SSS(DDD))

Newtonian fluid
SSS = ν0DDD, ν0 > 0,

Ladyzhenskaya (power-law like fluid)

SSS = ν0(ν1 + |DDD|2)
r−2

2 DDD, r > 1, ν1 ≥ 0.

Nice “continuous” explicit models (DDD := DDD(SSS))

Newtonian fluid
DDD = ν∗0SSS, ν∗0 > 0,

Inverse-like Ladyzhenskaya (power-law like fluid)

DDD = ν∗0 (ν∗1 + |SSS|2)
r∗−2

2 SSS, r∗ > 1, ν1 ≥ 0.
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Constitutive equations

Explicit constitutive equations

“Discontinuous” explicit models

Perfect plastic

|DDD| = 0 =⇒ |SSS| ≤ 1

|DDD| > 0 =⇒ SSS :=
DDD

|DDD|

Bingham (Herschley-Bulkley fluid)

|DDD| = 0 =⇒ |SSS| ≤ ν0

|DDD| > 0 =⇒ SSS :=
ν0DDD

|DDD|
+ ν(|DDD|)DDD

Fluids with activation criteria

SSS = ν(|DDD|)DDD

with ν being discontinuous at some d∗-the activation criterium
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Constitutive equations

Implicit-like constitutive equations

Still nice continuous explicit formula

Bingham fluid

DDD =
(|SSS| − ν0)+

ν1|SSS|
SSS

Only fully implicit continuous choice

Perfect plastic
||DDD|SSS−DDD|+ (|SSS| − 1)+ = 0
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Graph setting

Implicit formulation - maximal (monotone) graph setting

Implicit theory allows to get more models. Principle of objectivity and
material isotropy imply that

Explicit relation SSS = SSS(DDD) - the only form

SSS = α0III + α1DDD + α2DDD2

with α’s dependent on invariants

Implicit relation FFF(SSS,DDD) - the only form

0 = α0III + α1DDD + α2DDD2 + α3SSS + α4SSS2 + α5(DDDSSS + SSSDDD) + . . .

with α’s dependent on invariants
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Graph setting

Implicit formulation - maximal (monotone) graph setting

Implicit function FFF determines a graph A ⊂ Rd×d
sym × Rd×d

sym (or A(t, x)). We assume that
the graph is the ψ-maximal monotone graph:

(0, 0) ∈ A
Monotonicity: For any (SSS1,DDD1), (SSS2,DDD2) ∈ A

(SSS1 − SSS2) : (DDD1 −DDD2) ≥ 0

No strict monotonicity is needed!

Maximal graph: If for some (SSS,DDD) there holds

(SSS− S̃SS) : (DDD− D̃DD) ≥ 0 ∀ (S̃SS, D̃DD) ∈ A

then
(SSS,DDD) ∈ A

If A is (t, x)-dependent some measurability w.r.t. (t, x)

ψ and ψ∗ coercivity: For any (SSS,DDD) ∈ A(t, x)

SSS : DDD ≥ α(ψ(DDD) + ψ∗(SSS))− g(t, x) (En)

with α ∈ (0, 1] and g ∈ L1.
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Buĺıček (Charles University in Prague) Implicit fluids & Analysis Kraków July 3, 2012 8 / 25



Graph setting

Implicit formulation - maximal (monotone) graph setting

Implicit function FFF determines a graph A ⊂ Rd×d
sym × Rd×d

sym (or A(t, x)). We assume that
the graph is the ψ-maximal monotone graph:

(0, 0) ∈ A
Monotonicity: For any (SSS1,DDD1), (SSS2,DDD2) ∈ A

(SSS1 − SSS2) : (DDD1 −DDD2) ≥ 0

No strict monotonicity is needed!

Maximal graph: If for some (SSS,DDD) there holds

(SSS− S̃SS) : (DDD− D̃DD) ≥ 0 ∀ (S̃SS, D̃DD) ∈ A

then
(SSS,DDD) ∈ A

If A is (t, x)-dependent some measurability w.r.t. (t, x)

ψ and ψ∗ coercivity: For any (SSS,DDD) ∈ A(t, x)

SSS : DDD ≥ α(ψ(DDD) + ψ∗(SSS))− g(t, x) (En)

with α ∈ (0, 1] and g ∈ L1.
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Orlicz spaces

What is ψ? Excursion to Orlicz setting

Assume that ψ : Rd×d
sym → R is an N - function (if it depends only on the

modulus then Young function), i.e.,

ψ is convex and continuous

ψ(DDD) = ψ(−DDD)

lim
|DDD|→0+

ψ(DDD)

|DDD|
= 0, lim

|DDD|→∞

ψ(DDD)

|DDD|
=∞

We define the conjugate function ψ∗ as

ψ∗(SSS) := max
DDD

(SSS : DDD− ψ(DDD))
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Orlicz spaces

What is ψ? Excursion to Orlicz setting

Young inequality:

SSS : DDD ≤ ψ(DDD) + ψ∗(SSS)

Orlicz spaces: The Orlicz space Lψ(O)d×d is the set of all measurable
function DDD : Ω→ Rd×d

sym such that

lim
λ→∞

ˆ
O
ψ(λ−1DDD) = 0

with the norm

‖DDD‖Lψ := inf{λ;

ˆ
O
ψ(λ−1DDD) ≤ 1}

∆2 condition
ψ(2DDD) ≤ C1ψ(DDD) + C2
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Orlicz spaces

Optimality of ψ and ψ∗ - more general models

Non-polynomial growth

SSS ∼ (1 + |DDD|2)
r−2

2 ln(1 + |DDD|)DDD =⇒ ψ(DDD) ∼ |DDD|r ln(1 + |DDD|)

Different upper and lower growth in principle - ψ has different
polynomial upper and lower growth, for ψ(DDD) := ψ(|DDD|)

c1|DDD|r − c2 ≤ ψ(|DDD|) ≤ c3|DDD|q + c4
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Results

What is the goal?

Goal = existence result for as general constitutive relationship as
possible

A priori = energy estimates (Ω bounded and sufficiently smooth,
boundary conditions allowing to get the estimates)

Steady case ˆ
Ω

ψ(DDD) + ψ∗(SSS) dx ≤ C

Unsteady case

sup
t
‖v‖2

2 +

ˆ T

0

ˆ
Ω

ψ(DDD) + ψ∗(SSS) dx dt ≤ C
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Results

How to get the goal

Energy equality “holds” =⇒ simpler proof, i.e., if

ˆ
(v ⊗ v) : DDD(v) is meaningful

More difficult case, i.e.,

energy space is compactly embedded into L2

Buĺıček (Charles University in Prague) Implicit fluids & Analysis Kraków July 3, 2012 13 / 25



Results

How to get the goal

Energy equality “holds” =⇒ simpler proof, i.e., if

ˆ
(v ⊗ v) : DDD(v) is meaningful

More difficult case, i.e.,

energy space is compactly embedded into L2
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Results

The key result

Theorem (Easier case; Gwiazda, Świerczewska-Gwiazda et al)

If energy equality “holds” and ψ∗ satisfies ∆2 conditions then there exists
a weak solution for any relevant boundary conditions.

Theorem (Difficult case; Buĺıček, Gwiazda, Málek and
Świerczewska-Gwiazda)

Let ψ(DDD) := ψ(|DDD|) and ψ and ψ∗ satisfy ∆2 condition. Assume that
energy space is compactly embedded into L2. Then there exists a weak
solution for Navier’s bc.

The same result also holds for Dirichlet bc. by using the Wolf
decomposition of the pressure.
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Results

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ∗ satisfying ∆2

condition, we have ˆ
Ω

ψ(|∇2u|) ≤ C

(
1 +

ˆ
Ω

ψ(|f |)
)

for any u solving homogeneous Neuman problem with right hand side f .

Byproduct

Improvement of the Minty method =⇒ no use of the Vitali theorem =⇒ no strict
monotonicity required

Byproduct

Improvement of the Lipschitz approximation method =⇒ no need of ∆2 for ψ =⇒
nothing to our case due to the pressure =⇒ but may be use for general
parabolic/elliptic problems
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Buĺıček (Charles University in Prague) Implicit fluids & Analysis Kraków July 3, 2012 15 / 25



Results

Byproducts-increase the citation report

Byproduct

Theory for the laplace equation with Neumann bc, i.e., for ψ and ψ∗ satisfying ∆2

condition, we have ˆ
Ω

ψ(|∇2u|) ≤ C

(
1 +

ˆ
Ω

ψ(|f |)
)

for any u solving homogeneous Neuman problem with right hand side f .

Byproduct

Improvement of the Minty method =⇒ no use of the Vitali theorem =⇒ no strict
monotonicity required

Byproduct

Improvement of the Lipschitz approximation method =⇒ no need of ∆2 for ψ =⇒
nothing to our case due to the pressure =⇒ but may be use for general
parabolic/elliptic problems
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Results

Power-law like fluid - Explicit

Compact embedding is available if r > 6
5

r = 2 Lerray (1934)

r ≥ 11
5 for unsteady, r ≥ 9

5 steady; Ladyzhenskaya 60’s

r ≥ 9
5 unsteady; Málek. Nečas, Růžička 90’s

r ≥ 8
5 unsteady; Frehse, Málek, Steinahuer (2000)

r > 6
5 steady; Frehse, Málek, Steinahuer (2002)

r > 6
5 unsteady; Diening, Růžička, Wolf (2009)
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Results

Power-law like fluid - implicit (discontinuous)

r ≥ 11
5 - strict monotonicity - Gwiazda, Málek, Świerczewska

(2007)

r > 9
5 - Herschel-Bulkley model - Málek, Růžička, Shelukhin(2005)

r > 6
5 steady - strict monotonicity - Buĺıček, Gwiazda, Málek,

Świerczewska (2009)

r > 6
5 unsteady; Buĺıček, Gwiazda, Málek, Świerczewska (2010)
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Results

Novelties

Fully Orlicz setting

Fully implicit setting
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Methods

Methods

subcritical case - energy equality; Minty method
small problems if ψ does not satisfy ∆2 condition

supercritical case -Lipschitz approximation in Orlicz spaces;
generalized Minty method
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Methods

Lipschitz approximation

sequence of solutions vn; vn − v is not possible test function

introduce a Lipschitz function (vn − v)λ that is “closed” to to original

previous work are based on the continuity of the Hardy-Littelwood
maximal function in Lp- In Orlicz space setting one needs that ∆2

conditions are satisfied and log continuity w.r.t. x

Goal is to avoid use continuity of Hardy-Littelwood maximal function;
enough is just weak (1, 1) estimates
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Buĺıček (Charles University in Prague) Implicit fluids & Analysis Kraków July 3, 2012 20 / 25



Methods

Lipschitz approximation

Lemma

{un}∞n=1 tends strongly to 0 in L1 and {SSSn}∞n=1 such that
ˆ

Ω

ψ∗(|SSSn|) + ψ(|∇un|) dx ≤ C∗ (C∗ > 1).

Then for arbitrary λ∗ ∈ R+ and k ∈ N there exists λmax <∞ and there exists sequence
of {λk

n}∞n=1 and the sequence un
k (going to zero) and open sets E k

n := {un
k 6= un} such

that λk
n ∈ [λ∗, λmax] and for any sequence αn

k

un
k ∈W 1,p, ‖DDD(un

k)‖∞ ≤ Cλk
n ,

|Ω ∩ E k
n | ≤ C

C∗

ψ(λk
n)
,

ˆ
Ω∩Ek

n

|SSSn ·DDD(un
k)| dx ≤ CC∗

(
αk
n

k
+
αk
nψ(λk

n/α
k
n)

ψ(λk
n)

)
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Methods

Use of Lipschtiz approximation

We have approximative problem (vn,SSSn) and weak limits (v ,SSS), we need to show
that (SSS,DDD(v)) ∈ A
Test the approximative n- problem by Lipschitz approximation of vn − v , i.e.,
un
k := (vn − v)k

One gets (here SSS is such that (SSS,DDD) ∈ A

lim
n→∞

ˆ
un
k

=un
(SSSn − SSS) : DDD(un

k) ≤ CC∗
(
αk
n

k
+
αk
nψ(λk

n/α
k
n)

ψ(λk
n)

)
Hölder inequality gives

lim
n→∞

ˆ
Ω

|(SSSn − SSS) : DDD(vn − v)|ε ≤
ˆ
un=un

k

+

ˆ
un 6=un

k

≤ small terms→ 0
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Methods

Use of generalized Minty

point-wise convergence of (SSSn − SSS) : DDD(vn − v) to 0; strict monotonicity finishes
the proof

only monotonicity; Use Biting lemma; Since (SSSn − SSS) : DDD(vn − v) is bounded in L1

there is sequence of non-increasing sets Ak+1 ⊂ Ak , limk→∞ |Ak | = 0 such that

(SSSn − SSS) : DDD(vn − v) converges weakly in L1(Ω \ Ak)

point-wise & weak implies strong in L1(Ω \ Ak)

strong & weak implies for any bounded ϕ

lim
n→∞

ˆ
Ω\Ak

SSSn : DDD(vn)ϕ =

ˆ
Ω\Ak

SSS : DDD(v)ϕ

monotonicity of the graph implies (assume that A is x-independent) for any
nonnegative ϕ, and any (SSS1,DDD1) ∈ A fixed matrixes

0 ≤ lim
n→∞

ˆ
Ω\Ak

(SSSn − SSS1) : (DDD(vn)−DDD1)ϕ =

ˆ
Ω\Ak

(SSS− SSS1) : (DDD(v)−DDD1)ϕ
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Methods

Use of generalized Minty

ϕ arbitrary nonnegative implies

0 ≤ (SSS− SSS1) : (DDD(v)−DDD1) for a.a. x ∈ Ω \ Ak

Using maximality of the graph one gets

(SSS,DDD(v)) ∈ A for a.a. x ∈ Ω \ Ak

Using smallness of Ak we get

(SSS,DDD(v)) ∈ A for a.a. x ∈ Ω
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Methods

Future?????

• Extension to whole N- function setting, i.e., ψ depends on whole DDD and
not only on |DDD|, very hard
• Extension to “real” x-dependent setting, i.e., the growth estimates
depends crucially on x , i.e., for models

SSS ∼ (1 + |DDD|)r(c(x))−2DDD,

where c satisfy convection diffusion problem.
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